
Use of DockerI for deployment and testing of astronomy software

D. Morris, S. Voutsinas, N.C. Hambly and R.G. Mann

Institute for Astronomy, School of Physics and Astronomy, University of Edinburgh, Royal Observatory, Blackford Hill,
EH9 3HJ, UK

Abstract

Lessons learned from using Docker for deployment and testing

Keywords:

1. Introduction

In common with many of the physical sciences

astronomy has entered the era of Big Data (Mick-

aelian, 2015). Nowadays astronomical Data Cen-

tres aspire to not only serve subsets of large–scale

datasets, but also to provide increasingly sophis-

ticated services alongside their data holdings in

order that their users can fully exploit them. The

concept of the ‘science archive’ (e.g. Hambly et al.,

2008, and refereces therein) emerged in the re-

cent past in part fulfilment of the mantra ‘ship

the results, not the data’ (e.g. Quinn et al., 2004,

and other contributions within the same volume).

Such archives generally provide Structured Query

Language access to their catalogues which goes

some way to confining processing/filtering, at least

initially, to the server side.

Ihttps://www.docker.com

Email address: dmr,stv,nch,rgm@roe.ac.uk

(D. Morris, S. Voutsinas, N.C. Hambly and R.G. Mann)

Ultimately it is via provision to the end–user

of significant computational resources, server–side

within the Data Centre or distributed with the

data in Grid or Cloud architectures, that the full

potential of user driven server–side data analy-

sis can be realised (e.g. Ball, 2013). This in

turn requires an infrastructure capable of dealing

with the questions and concerns involving scal-

ability, security, portability and reproducability

that arise when computational resources within

the Data Centre are made available to the end

user.

DockerI is emerging as the technology of choice

in such situations (Yu and Huang, 2015; Wang

et al., 2015). Docker is an operating system level

virtualization environment 1 that uses software

containers to provide isolation between applica-

tions. The rapid adoption and subsequent evolu-

tion of Docker from the initial open source project

1https://en.wikipedia.org/wiki/

Operating-system-level_virtualization

Preprint submitted to Astronomy & Computing February 8, 2016

https://www.docker.com
https://en.wikipedia.org/wiki/Operating-system-level_virtualization
https://en.wikipedia.org/wiki/Operating-system-level_virtualization

launched in 20132 by PaaS provider dotCloud3,

to the formation of the Open Container Initia-

tive 4 in 20155 suggests that Docker met a real

need within the software development community

which was not being addressed by the existing

tools.

The membership list for the Open Container

Initiative (ref appendix A) mirrors the range of

applications of the Linux kernel itself, from large

scale cloud compute platforms (Amazon, Google

and Joyent) and super computers (IBM and Fu-

jitsu) to embedded IOT systems (Resin.IO).

The concepts and technologies for operating

system level virtualization have existed for a num-

ber of years. Solaris Containers have been avail-

able as part of the Solaris operating system since

2005 6 and has been used extensivley in large scale

production environments. Even within Linux, the

core technologies used by Docker containers, cgroups

7 and namespaces, were first added to the Linux

kernel in 2007.

Although both the speed and simplicity of the

Docker API have contributed to its adoption, it is

the development of a standardized format and in-

terface for describing and managing software con-

2http://www.infoq.com/news/2013/03/Docker
3https://www.dotcloud.com/
4https://www.opencontainers.org/
5http://blog.docker.com/2015/06/

open-container-project-foundation/
6https://en.wikipedia.org/wiki/Solaris_

Containers
7https://en.wikipedia.org/wiki/Cgroups

tainers that has been the ‘unique selling point’

that differentiates Docker from its competitors,

and has been the driving force behind the rapid

adoption of Docker across such a wide range of

different applications. 8 9

• At the end-user level, Docker enables users

to describe, share and manage applications

and services using a common interface by

wrapping them in standardized containers.

• From a developer’s perspective, Docker makes

it easy to create standard containers for their

software applications or services.

• From a system administrator’s perspective,

Docker makes easy to automate the deploy-

ment and mangement of business level ser-

vices as a collection of standard containers.

1.1. Docker, DevOps and MicroServices

In the DevOps world, the software developer

and system administrator roles are members of

the same team, directly involved in developing,

deploying and managing business level services.

Describing the deployment environment using

Docker containers enables the team to treat sys-

tem infrastructure as code, applying the same tools

8http://www.zdnet.com/article/

what-is-docker-and-why-is-it-so-darn-popular/
9http://www.americanbanker.

com/news/bank-technology/

why-tech-savvy-banks-are-gung-ho-about-container-software-1078145-1.

html

2

http://www.infoq.com/news/2013/03/Docker
https://www.dotcloud.com/
https://www.opencontainers.org/
http://blog.docker.com/2015/06/open-container-project-foundation/
http://blog.docker.com/2015/06/open-container-project-foundation/
https://en.wikipedia.org/wiki/Solaris_Containers
https://en.wikipedia.org/wiki/Solaris_Containers
https://en.wikipedia.org/wiki/Cgroups
http://www.zdnet.com/article/what-is-docker-and-why-is-it-so-darn-popular/
http://www.zdnet.com/article/what-is-docker-and-why-is-it-so-darn-popular/
http://www.americanbanker.com/news/bank-technology/why-tech-savvy-banks-are-gung-ho-about-container-software-1078145-1.html
http://www.americanbanker.com/news/bank-technology/why-tech-savvy-banks-are-gung-ho-about-container-software-1078145-1.html
http://www.americanbanker.com/news/bank-technology/why-tech-savvy-banks-are-gung-ho-about-container-software-1078145-1.html
http://www.americanbanker.com/news/bank-technology/why-tech-savvy-banks-are-gung-ho-about-container-software-1078145-1.html

they use for managing the software source code,

e.g. source control, automated testing etc. to the

infrastructure configuration.

In particular, Docker has emerged as one of

the key technologies for automating the continous

delivery and continous deployment of MicroSer-

vice based architectures.

“in 2014, no one mentioned Docker ..

in 2015, if they don’t mention Docker,

then they aren’t paying attention”

[The State of the Art in Microservices by Adrian

Cockcroft, Jan 2015] 10

1.2. Reproducable science

In the science and research community, Dock-

ers ability to describe a software deployment envi-

ronment has the potential to improve the reprod-

ucability and the sharing of data analysis methods

and techiniques. (Boettiger, 2014) describes how

the ability to publish a detailed description of a

software environment alongside a research paper

enables other researchers to reproduce and build

on the original work. (Nagler et al., 2015) de-

scribes work to develop containerized versions of

software tools used to analyse data from particle

accelerators. 11

A simple example of how using Docker to wrap

an application can make it more portable is our

10https://www.youtube.com/watch?v=pwpxq9-uw_

0&t=160
11https://github.com/radiasoft/containers

wrapper for the IVOATEX12 document build sys-

tem which has a number of OS–dependent in-

stallation instructions. Wrapping the toolkit in

a Docker container and making it available on

GitHub 13 and the Docker registry 14 makes it

easy to deploy and run.

1.3. Compute resource services

In the case of submitting user code to a com-

pute resource for execution within a data center,

there are two roles in which Docker may be useful.

Docker can be used internally to provide the vir-

tualization layer for deploying and managing the

execution environments for the submitted code.

This scenario is already being evaluated by a num-

ber of groups, in particular Docker is one of the

technologies being used to deliver a ‘platform as

a service’ (PaaS) infrastructure for the European

Space Agency’s Gaia mission archive (O’Mullane,

2016; Ferreruela, 2016).

Alternatively, Docker could be used as part of

the public service interface, providing the stan-

dard language for describing and packaging the

software. In this scenario, the user would package

their software in a container and then either sub-

mit the textual description, or the binary image

of the container, to the service for execution. The

advantage of this approach is that by wrapping

the analysis software in a standard container it

12http://www.ivoa.net/documents/Notes/IVOATex
13https://github.com/ivoa/ivoatex
14https://hub.docker.com/r/ivoa/ivoatex/

3

https://www.youtube.com/watch?v=pwpxq9-uw_0&t=160
https://www.youtube.com/watch?v=pwpxq9-uw_0&t=160
https://github.com/radiasoft/containers
http://www.ivoa.net/documents/Notes/IVOATex
https://github.com/ivoa/ivoatex
https://hub.docker.com/r/ivoa/ivoatex/

makes it portable. The user can build and test

their analysys software on their own platform be-

fore submitting it to the remote service for exec-

tion. The common standard for container runtime

environment means that the user can be confident

that their software will behave in the same man-

ner when tested on a local platform or deployed

on the remote service.

In this paper we focus on some specific aspects

of the above during our development and deploy-

ment of the Firethorn infrastructure In Sec-

tion ?? we provide details of . . . ; in Section ?? we

discuss . . . ; and finally in Section ?? we conclude

with a summary of our findings which we believe

will be of wider benefit to the astronomical soft-

ware development community.

2. Portability and Reproducibility

One of the key drivers for using Docker to de-

ploy our systems was the level of portability and

reproducibility it provides.

Within our development process our software

is run on a number of different platforms, includ-

ing the develoers desktop computer, the integra-

tion test systems and the live deployment system.

However much care was taken to control each

environment they inevitably ended up being slightly

different.

Even something as simple as the Java or Tom-

cat version used to run the software can be diffi-

cult to control reliably.

We could, in theory, mandate a specific version

and configuration of the software stack used to

develop, test and deploy our software.

In reality, unless a platform is created and

managed exclusievly by an automated process,

then manual configuration means that some level

of discrepancy will creep in, often when it is least

expected.

There are a number of different was of achiev-

ing this level of automation.

A common method of managing a large set

of systems is to use an automated configuration

management tool, such as Puppet 15 or Chef 16,

to manage the system configuration based on in-

formation held in a centrally controlled template.

Another common practice is to use a contin-

uous integration platform such as Jenkins 17 to

automate the testing and deployment of the prod-

ucts from a software development project.

These two techniques are not exclusive, and it

is not unusual to use an automated configuration

management tool such as Puppet to manage the

(physical or virtual) hardware platform, in com-

bination with a continuous integration platform

such as Jenkins to manage the integraton testing,

and in some cases the live service deployment as

well.

In our case, the limits on the number of re-

sources available, both human and technological

15https://puppetlabs.com/
16https://www.chef.io/chef/
17https://wiki.jenkins-ci.org/

4

https://puppetlabs.com/
https://www.chef.io/chef/
https://wiki.jenkins-ci.org/

at the start of the project mean that whatever

system we used needed to start small and evolve

as the project developed.

We initially started out using manually con-

figured virtual machines to host the test and live

deployments, which gave us an initial level of iso-

lation from the physical machine configuration.

For example, we could control the verion of

the Java runtime and Tomcat web server deployed

inside the virtual machines, without impacting

other project’s software and services running on

the same physical hardware.

It also allowed us to run more than one set of

our services on the same physical platform, while

still being able to configure each set of services

independently.

The first step in automating the deployment

process was to automate the allocation of the vir-

tual machines using a set of shell scripts which

created new virtual machines from a set of pre-

configured templates 18.

The templates handled the basic virtual ma-

chine configuration such as cpu and memory allo-

cation, network configuration, disc space and op-

erating system.

The command line tools enabled us to spin up

a new virtual machine in about 20 seconds, from

initial create command to running machine with

a login prompt.

Replacing the manually configured virtual ma-

18https://github.com/Zarquan/ischnura-kvm

chines that were available at the start of the project

with template based instances gave us a consistent

set of platforms to work with.

Once the virtual machines were created, we

used a set of shell scripts to automate the instal-

lation of the additional software packages needed

to run our services.

For our Java webservices, this included installing

and configuring specific versions of the Java run-

time 19 and Apache Tomcat 20 web server.

The final step in the process was to deploy our

webservices into Tomcat and configure them with

the correct user accounts and passwords to access

the local databases.

At the point when we started to look at us-

ing Docker, although the process of installing and

configuring the software inside the virtual ma-

chines was scripted, it was not automated. The

process still required a level of human interation,

specifying the parameters for the scripts and run-

ning them.

We were beginning the process of evaluating

the available configuration management and con-

tinuous integration tools when we included Docker

in the list of tools to look at.

—-

Early in our adoption of Docker, we discov-

ered one of its strengths to be the portability it

provides. Often in scientific development, as well

19http://openjdk.java.net/
20http://tomcat.apache.org/

5

https://github.com/Zarquan/ischnura-kvm
http://openjdk.java.net/
http://tomcat.apache.org/

as in software development as a whole, projects

consist of large teams whose members may have

unique preferences in terms of development envi-

ronments. This was the case during our own de-

velopments. We ran the same services in develop-

ment and production servers apart from our lap-

tops, each with their own specifications, charac-

teristics and libraries, within an intricate and rel-

atively inflexible network setup. In such complex

systems, team collaboration in different environ-

ments raises issues often caused by different ver-

sions of libraries or software behaving differently

in different platforms. These issues take time to

track down, as we encountered a few times.

As we switched to Docker for running the full

chain of our software services, we noticed fewer

and fewer of these issues, i.e. missing depen-

dencies, library mismatches; and we experienced

more efficient collaboration and bug tracking, faster

deployment in our testing and production servers,

and automation of the virtualization, setup and

configuration of our systems.

But even when looking at Docker from the per-

spective of simply doing science, the portability

that it provides offers clear advantages and solves

problems that scientists often encounter. Take

as an example a scientist who has written a cou-

ple of Python classes and archived them as a zip

somewhere. We can easily imagine someone in the

future wanted to rerun this legacy piece of code

from a completely different platform, environment

and newer libraries, which may be incompatible

with what the original scientist had written. Or

even if the platform was fully compatible, running

the code would require several manual processes

such as downloading the zip file, extracting the

files, reading documentation on how to set up and

run the code, installing any dependencies with the

right versions for each, etc. Contrast that process

with how this could be done using Docker, which

could be as simple as:

docker run --name container_name \

scientist_id/my_python_code

3. Better control of support environment

It is often the case in software development

that developers do not have full control of the

server platform where their code will run. For ex-

ample, a server, where the code is meant to be

run, may already be set up with a specific ver-

sion of java and tomcat, with no possibility to

alter these versions due to other services running

from this machine. With Docker, you can set up

your containers to use whichever version of java,

tomcat, or other libraries needed; and this chain

will run in a virtual, isolated environment on the

shared machine mentioned before. This, it pro-

vides the capability of having full control of the

environment where your code will run, without

the concern of what the underlying machine al-

ready has installed.

6

4. Container types

WebService containers

(Java + Tomcat) + webapp

(Apache + WebPy) + Python Built on top

of the previously mentioned web service contain-

ers was our interface which was also built using

docker containers. Without going into low level

detail, the containers were built as an SQL proxy

container that linked to our database for storing

user queries, an apache container which sat on top

of an ubuntu image, a base python and a python-

libraries container and finally a webpy container.

Support services

JDBC connections ambasador abstraction

Metadata database

Test statistics database

Build tools

Maven Mercurial Docker

sqlsh

ivoatex

5. Tricks learned

mount unix sockets

docker in docker mount docker sock

ssh in docker mount ssh sock

ambasadors

socat proxy

issues with original ambasador21

21https://hub.docker.com/r/svendowideit/

ambassador/

original idea22

source code not published until later23

easy enough to roll our own

unix to http docker sock

JDBC proxy

JDBC over SSH proxy

rolling your own

docker makes it easy open source makes it easy

to copy ideas start with binary blobs work back

up the tree creating our own socat java + tomcat

fedora

fine grained control over versions

6. Issues found

When using new technologies for the first time,

in particular with newer ones, encountering issues

is expected. These issues might be caused by a

developer/scientist mistake made while overcom-

ing the learning curve or by software bugs in the

technology itself, which may have not been un-

covered yet while adoption of the technology is

still growing, and all possibly usages of it have

not been visited yet. We document here some of

these issues. More important than an analysis of

the issues themselves is the understanding of the

process undertaken to discover and solve them.

An important point to make here, before going

into more detail, is in regard to the open-source

22http://docs.docker.com/engine/articles/

ambassador_pattern_linking/
23https://github.com/SvenDowideit/dockerfiles/

blob/master/ambassador/Dockerfile

7

https://hub.docker.com/r/svendowideit/ambassador/
https://hub.docker.com/r/svendowideit/ambassador/
http://docs.docker.com/engine/articles/ambassador_pattern_linking/
http://docs.docker.com/engine/articles/ambassador_pattern_linking/
https://github.com/SvenDowideit/dockerfiles/blob/master/ambassador/Dockerfile
https://github.com/SvenDowideit/dockerfiles/blob/master/ambassador/Dockerfile

nature and culture of Docker and the Docker com-

munity. We will describe this in more detail in the

following sections. The main takeaway from this

was that both finding how to go about solving

issues related to containers and figuring out how

the preferred method of implementing a certain

feature is easy enough as doing a search of the

keywords related to what you need. This can be

done by either using a generic search engine or

visiting the sources where the main Docker com-

munity interaction takes place 24 25 26.

Because Docker is an open source solution, it

has an active open source community behind it

which enables users to find and fix issues more

efficiently. An open source community means it

is more likely that any issue you might find has

already been encountered by someone else, and

just as likely that it has been solved, officially (as

part of a bug fix in Docker release) or unofficially

(here is how I solved thisuser xyz). Contrast this

with encountering issues using some proprietary

technology with a more limited number of users,

with a much slower pace of updating versions and

bug-fixing. Compare it to building a workflow or

software environment, sitting possibly on a Vir-

tual Machine with a particular setup of intercon-

nected technologies and/or services, which has for

24https://forums.docker.com/c/

general-discussions/general
25http://stackoverflow.com/questions/tagged/

docker
26https://github.com/docker/docker/issues

many years come with a significant overhead for

finding solutions to problems encountered in this

chain.

Another key point to note is how we bene-

fited from Dockers support team as well as the

number of early adopters. We decided to take

up Docker at an early stage, which can be con-

sidered its bleeding-edge phase (Version 1.6), at

which point it was more likely to discover issues.

However, with the large team and strong techno-

logical support of its developers, as well as the sig-

nificant number of early adopters, new releases to

solve bugs or enhance usability and performance

were issued frequently. Consequently, after some

research, we realized that many of the issues we

found, whether they could be considered bugs or

usability improvements needed, were often fixed

in subsequent releases, meaning that by updating

our Docker version they would be solved.

7. Memory issues

As part of our development for the Firethorn

project (link) we developed a testing suite written

in Python. This suite included some long-running

tests, which iterated a list of user submitted SQL

queries that had been run through our systems

in the past, running the same query via a direct

route to SQL server as well as through the new

Firethorn system and comparing the results. This

list scaled up to several thousand queries, which

meant that a single test pass for a given cata-

8

https://forums.docker.com/c/general-discussions/general
https://forums.docker.com/c/general-discussions/general
http://stackoverflow.com/questions/tagged/docker
http://stackoverflow.com/questions/tagged/docker
https://github.com/docker/docker/issues

logue could take several days to complete. The

issue we encountered here was that the docker

process was being killed after several hours of ini-

tializing the test, with out of memory error mes-

sages. An initial attempt at solving the prob-

lem was to set memory limits to all of our con-

tainers, which changed the symptoms and then

caused one of our containers to fail with mem-

ory error messages. This also happened to be the

main Tomcat service we had that served as the

engine to the system. After a few iterations of

attempting to run the chain with different con-

figurations, the solution was found through com-

munity forums, when we discovered that several

other people were encountering the same symp-

toms with similar setups. Specifically, the prob-

lem was due to a memory leak, caused by the

logging setup in version 1.6 of Docker, where out-

put sent to the system stdout was being stored

in memory causing a continuous buffer growth.

(https://github.com/docker/docker/issues/9139) The

solution to this problem that we adopted was to

send the container system output, and all other

logs from our container processes, to log files in

our host.

docker run \

...

--volume "/var/logs/firethorn/: \

/var/local/tomcat/logs" \

...

"firethorn/firethorn:2.0"

We learned several valuable lessons through

the process of researching how other developers

managed these problems, for example, the ap-

proach to logging where the logs of a container are

stored separately from the container itself, mak-

ing it easier to debug and follow the system logs.

In addition, we benefited from learning how and

why limiting memory for each container was an

important step when building each of our con-

tainers.

As we noticed shortly after the issue was raised

in the Docker community, a fix was released as

part of a new Docker release, 1.7. In addition

Docker have since then released a new pluggable

driver based framework for handling logging27

Original docker logging to JSON

Docker version host version docker in docker

version

Docker registry fedora mis-tagged

storage drivers lvm btrfs

Conflict with libvirtd on RedHat/Fedora

8. Moving target

Memory issues fixed

Docker registry

Docker compose

Docker storage

Docker network

27https://docs.docker.com/engine/reference/

logging/overview/

9

https://docs.docker.com/engine/reference/logging/overview/
https://docs.docker.com/engine/reference/logging/overview/

9. Conclusion

Acknowledgements

This work has been supported in part by grants

from EC FP7 programmes . . . and from the UK

Science and Technology Facilities Council.

References

Ball, N.M., 2013. CANFAR+Skytree: A Cloud Comput-

ing and Data Mining System for Astronomy, in: Friedel,

D.N. (Ed.), Astronomical Data Analysis Software and

Systems XXII, p. 311. arXiv:1312.3997.

Boettiger, C., 2014. An introduction to Docker for re-

producible research, with examples from the R environ-

ment. ArXiv e-prints arXiv:1410.0846.

Ferreruela, V., 2016. Gavip gaia avi portal, collabora-

tive paas for data-intensive astronomical science, in:

Lorente, N.P.F., Shortridge, K. (Eds.), ADASS XXV,

ASP, San Francisco. p. TBD.

Hambly, N.C., Collins, R.S., Cross, N.J.G., Mann, R.G.,

Read, M.A., Sutorius, E.T.W., Bond, I., Bryant, J.,

Emerson, J.P., Lawrence, A., Rimoldini, L., Stewart,

J.M., Williams, P.M., Adamson, A., Hirst, P., Dye,

S., Warren, S.J., 2008. The WFCAM Science Archive.

Mon. Not. R. Astron. Soc. 384, 637–662. doi:10.1111/

j.1365-2966.2007.12700.x, arXiv:0711.3593.

Mickaelian, A.M., 2015. Astronomical Surveys and Big

Data. ArXiv e-prints arXiv:1511.07322.

Nagler, R., Bruhwiler, D., Moeller, P., Webb, S., 2015.

Sustainability and Reproducibility via Containerized

Computing. ArXiv e-prints arXiv:1509.08789.

O’Mullane, W., 2016. Bringing the computing to the data,

in: Lorente, N.P.F., Shortridge, K. (Eds.), ADASS

XXV, ASP, San Francisco. p. TBD.

Quinn, P.J., Barnes, D.G., Csabai, I., Cui, C., Genova,

F., Hanisch, B., Kembhavi, A., Kim, S.C., Lawrence,

A., Malkov, O., Ohishi, M., Pasian, F., Schade, D.,

Voges, W., 2004. The International Virtual Observatory

Alliance: recent technical developments and the road

ahead, in: Quinn, P.J., Bridger, A. (Eds.), Optimizing

Scientific Return for Astronomy through Information

Technologies, pp. 137–145. doi:10.1117/12.551247.

Wang, X.Z., Zhang, H.M., Zhao, J.H., Lin, Q.H., Zhou,

Y.C., Li, J.H., 2015. An Interactive Web-Based Anal-

ysis Framework for Remote Sensing Cloud Comput-

ing. ISPRS Annals of Photogrammetry, Remote Sensing

and Spatial Information Sciences , 43–50doi:10.5194/

isprsannals-II-4-W2-43-2015.

Yu, H.E., Huang, W., 2015. Building a Virtual HPC Clus-

ter with Auto Scaling by the Docker. ArXiv e-prints

arXiv:1509.08231.

Appendix A. Open Container Initiative mem-

bership

Cloud Services

• Cloud Services

– Amazon web services - https://aws.amazon.com/

– Google - http://www.google.com/

– Apcera - https://www.apcera.com/

– EMC - http://www.emc.com/

– Joyent - https://www.joyent.com/

– Kyup - https://kyup.com/

– Odin - http://www.odin.com/

– Pivotal - http://pivotal.io/

– Apprenda - https://apprenda.com/

– IBM - http://www.ibm.com/

10

http://arxiv.org/abs/1312.3997
http://arxiv.org/abs/1410.0846
http://dx.doi.org/10.1111/j.1365-2966.2007.12700.x
http://dx.doi.org/10.1111/j.1365-2966.2007.12700.x
http://arxiv.org/abs/0711.3593
http://arxiv.org/abs/1511.07322
http://arxiv.org/abs/1509.08789
http://dx.doi.org/10.1117/12.551247
http://dx.doi.org/10.5194/isprsannals-II-4-W2-43-2015
http://dx.doi.org/10.5194/isprsannals-II-4-W2-43-2015
http://arxiv.org/abs/1509.08231

• Operating systems & software

– Microsoft - http://www.microsoft.com/

– Oracle - http://www.oracle.com/

– CoreOS - https://coreos.com/

– Redhat - http://www.redhat.com/en

– Suse - https://www.suse.com/

• Container Software

– Docker - https://www.docker.com/

– ClusterHQ - https://clusterhq.com/

– Kismatic - https://kismatic.io/

– Portworx - http://portworx.com/

– Rancher - http://rancher.com/

– Univa - http://www.univa.com/

• Security

– Polyverse - https://polyverse.io/

– Scalock - https://www.scalock.com/

– Twistlock - https://www.twistlock.com/

• Datacenter infrastructure

– Nutanix- http://www.nutanix.com/

– Datera - http://www.datera.io/

– Mesosphere - https://mesosphere.com/

– Weave - http://www.weave.works/

• Computing hardware

– Intel - http://www.intel.com/

– Dell - http://www.dell.com/

– Fujitsu - http://www.fujitsu.com/

– Hewlett Packard Enterprise - https://www.hpe.com/

• Telecommunications hardware

– Cisco - http://www.cisco.com/

– Infoblox - https://www.infoblox.com/

– Midokura - http://www.midokura.com/

– Huawei - http://www.huawei.com/

• Telecommunications providers

– AT&T - http://www.att.com/

– Verizon Labs - www.verizonwireless.com/

• System Monitoring

– Sysdig - http://www.sysdig.org/

• Finance

– Goldman Sachs - http://www.goldmansachs.com/

• Virtualization platforms

– VMware - http://www.vmware.com/

• IOT Embedded Systems

– Resin.io - https://resin.io/

• Social Media Platforms

– Twitter - https://twitter.com/

11

	Introduction
	Docker, DevOps and MicroServices
	Reproducable science
	Compute resource services

	Portability and Reproducibility
	Better control of support environment
	Container types
	Tricks learned
	Issues found
	Memory issues
	Moving target
	Conclusion
	Open Container Initiative membership

