
Use of DockerI for deployment and testing of astronomy software

D. Morris, S. Voutsinas, N.C. Hambly and R.G. Mann

Institute for Astronomy, School of Physics and Astronomy, University of Edinburgh, Royal Observatory, Blackford Hill,
EH9 3HJ, UK

Abstract

Lessons learned from using Docker for deployment and testing of astronomy software.

Keywords:

1. Introduction

In common with many sciences, survey astron-

omy has entered the era of “Big Data”, which

changes the way that sky survey data centres must

operate. For more than a decade, they have been

following the mantra of ‘ship the results, not the

data’ (e.g. Quinn et al., 2004, and other con-

tributions within the same volume) and deploy-

ing “science archives” (e.g. Hambly et al., 2008,

and references therein), which provide users with

functionality for filtering sky survey datasets on

the server side, to reduce the volume of data to be

downloaded to the users’ workstations for further

analysis. Typically these science archives have

been implemented in relational database manage-

ment systems, and astronomers have become adept

in exploiting the power of their Structured Query

Language (SQL) interfaces.

Ihttps://www.docker.com

Email address: dmr,stv,nch,rgm@roe.ac.uk

(D. Morris, S. Voutsinas, N.C. Hambly and R.G. Mann)

However, as sky survey catalogue databases

have grown in size – the UKIDSS (Hambly et al.,

2008) databases were 1–10 TB, VISTA (Cross et al.,

2012) catalogue data releases are several 10s of TB

as is the final data release from the Sloan Dig-

ital Sky Survey (DR12; Alam et al. 2015), Pan-

STARRS1 is producing a ∼100 TB database (Flewelling,

2015), and LSST (Jurić et al. 2015; catalogue

data volumes of up to 1 TB per night) will pro-

duce databases several Petabytes in size – the

minimally useful subset of data for users is grow-

ing to the point where a simple filtering with an

SQL query is not sufficient to generate a result

set of modest enough size for a user to want to

download to their workstation. This means that

the data centre must provide the server–side com-

putational infrastructure to allow users to con-

duct (at least the first steps in) their analysis in

the data centre before downloading a small result

set. The same requirement arises for data cen-

tres that wish to support survey teams in pro-

Preprint submitted to Astronomy & Computing October 5, 2016

https://www.docker.com


cessing their imaging data (with data volumes

typically 10 to 20 times larger than those quoted

above for catalogue data sets). In both cases data

centre staff face practical issues when support-

ing different sets of users running different sets

of software on the same physical infrastructure

(e.g. Gaudet et al. 2009).

These requirements are not, of course, peculiar

to astronomy, and similar considerations have mo-

tivated the development of Grid and Cloud Com-

puting over the past two decades. A pioneering

example of the deployment of cloud computing

techniques for astronomy has been the CANFAR

project (Gaudet et al., 2009, 2011; Gaudet, 2015)

undertaken by the Canadian Astronomy Data Cen-

tre and collaborators in the Canadian research

computing community. The current CANFAR

system is based on hardware virtualization, where

the data processing software and web services are

run in virtual machines, isolated from the details

of the underlying physical hardware.

Following on from the development of system

based on hardware virtualization the past few years

have seen an explosion of interest within both the

research computing and commercial IT sectors in

operating-system-level virtualization, which pro-

vides an alternative method of creating and man-

aging the virtualized systems.

A lot of the most recent activity in this field

has centred on Docker and this paper presents

lessons learned from two experiments we have con-

ducted with Docker, a simple test of its capabili-

ties as a deployment system and a more compli-

cated one connecting a range of Virtual Observa-

tory (VO; Arviset et al. 2010) services running in

separate Docker containers.

Even by the standards of large open source

projects, the rise of Docker has been rapid, and

its development continues apace. A journal paper

cannot hope, therefore, to present an up-to-date

summary of Docker, nor an authoritative tutorial

in its use, so we attempt neither here. Rather,

we aim to describe the basic principles underly-

ing Docker, and to contrast its capabilities with

the virtual machine (VM) technologies with which

astronomers may be more familiar, highlighting

where operating–system–level (OS–level) virtual-

ization provides benefit for astronomy. We illus-

trate these benefits through describing our two

experimental Docker projects and the lessons we

learned from undertaking them. Many of the is-

sues we encountered have since been solved as

the Docker engine and toolset continue to evolve,

but we believe there remains virtue in recounting

them, both because they illustrate basic proper-

ties of Docker containers and because they show

how the Docker community operates.

For the sake of definiteness, we note the de-

velopment of the systems described in this paper

were based on Docker version 1.6 and that we dis-

cuss solutions to the issues we encountered that

have appeared up to version 1.10.

2



The plan of this paper is as follows. In Sec-

tion 2 we describe hardware and OS–level vir-

tualization, summarising the differences between

the two approaches, and in Section 3 we intro-

duce Docker as a specific implementation of OS-

level virtualization. Section 4 describes our first

Docker experiment, in which it was used to cre-

ate a deployment system for the IVOATEX Docu-

ment Preparation System (Demleitner et al., 2016),

while Section 5 describes the use of Docker in the

development and deployment of the Firethorn VO

data access service (Morris, 2013). Finally, Sec-

tion 7 summarises the lessons learned from these

experiments and discusses the place that Docker

(or similar technologies) may develop in astro-

nomical data management. The development of

Docker is taking place at a very rapid pace, with

many substantial contributions made through blog

posts and other web pages, rather than through

formal journal papers, so we present in Appendix

A a list of the online sources of information that

we have found useful during our work to date with

Docker.

2. Virtual machines and containers

The physical hardware of a large server may

have multiple central processor units, each with

multiple cores with support for multiple threads

and access to several hundred giga-bytes of sys-

tem memory. The physical hardware may also

include multiple hard disks in different configu-

rations, including software and hardware RAID

systems, and access to Network Attached Storage

(NAS). However, it is rare for a software appli-

cation to require direct access to the hardware

at this level of detail. In fact, it is more often

the case that a software application’s hardware

requirements can be described in much simpler

terms. Some specific cases such as database ser-

vices dealing with large data sets may have spe-

cific hardware requirements for disk access but in

most cases this still would represent a subset of

the hardware available to the physical machine.

Virtualization allows a system administrator

to create a virtual environment for a software ap-

plication that provides a simplified abstract view

of the the system. If a software application is able

to work within this abstract environment then

the same application can be moved or redeployed

on any platform that is capable of providing the

same virtual environment, irrespective of what

features or facilities the underlying physical hard-

ware provides. This ability to create standard-

ized virtual systems on top of a variety of differ-

ent physical hardware platforms formed the ba-

sis of the Infrastructure as a Service (IaaS) cloud

computing service model as exemplified by the

large scale providers like Amazon Web Services

(AWS)1. The interface between customer and ser-

vice provider is based on provision of abstract vir-

tual machines. The details of the underlying hard-

1https://aws.amazon.com/

3

https://aws.amazon.com/


ware platform and the infrastructure required to

provide network, power and cooling are all the

service provider’s problem. What happens inside

the virtual machine (VM) is up to the customer,

including the choice of operating system and soft-

ware applications deployed in it.

With hardware virtualization, each VM includes

a simulation of the whole computer, including the

system BIOS, PCI bus, hard disks, network cards

etc. The aim is to create a detailed enough sim-

ulation such that the operating system running

inside the VM is not aware that it is running in

a simulated environment. The key advantage of

this approach is that because the guest system is

isolated from the host, the guest virtual machine

can run a completely different operating system

to that running on the physical host. However,

this isolation comes at a price. With hardware

virtualization each VM uses a non–trivial share

of physical system’s resources just implementing

the simulated hardware, resources which are no

longer available for running the end user applica-

tion software and services. Most of the time this

cost is hidden from the end user, but it is most

visible when starting up a new VM. With hard-

ware virtualization the VM has to run through

the full startup sequence from the initial BIOS

boot through to the guest operating system ini-

talization process, starting the full set of daemons

and services that run the the background.

Comparing hardware virtualization with OS

virtualization (Figure 1) we find a number of key

differences between them, to do with what they

are capable of and how they are used. A key dif-

ference is determined by the different technolo-

gies used to implement the virtual machines. As

we have already described, in hardware virtual-

ization the host hypervisor creates a full simu-

lation of the guest system, including the system

hardware, firmware and operating system. With

operating-system-level virtualization the physical

host operating system and everything below it,

including the system firmware and hardware, is

shared between the host and guest systems. This

imposes a key limitation on OS virtualization in

that the host and guest system must use the same

operating system. So for example, while a Linux

host system can use OS virtualization to support

guests running different Linux distributions and

versions, it cannot use OS virtualization to sup-

port a BSD or Illumos guest. However, if this lim-

itation is not a problem, then sharing the system

hardware, firmware and operating system kernel

with the host system means that supporting OS

VMs, or containerisation, represents a much lower

cost in terms of system resources. This in turn

leaves more of the system resources available for

running the end user application software and ser-

vices.

4



Figure 1: Comparison between (on the right) Hardware and (on the left) OS virtualization.

3. Docker

DockerI is emerging as the technology of choice

for VM containers (Yu and Huang, 2015; Wang

et al., 2015). Docker is an operating system level

virtualization environment that uses software con-

tainers to provide isolation between applications.

The rapid adoption and evolution of Docker from

the initial open source project launched in 20132

by ‘platform–as–a–service’ (PaaS) provider dot-

Cloud3, to the formation of the Open Container

Initiative4 in 20155 suggests that Docker met a

real need within the software development com-

munity which was not being addressed by the

existing tools. As an aside it is interesting to

note that the technologies behind OS virtualiza-

2http://www.infoq.com/news/2013/03/Docker
3https://www.dotcloud.com/
4https://www.opencontainers.org/
5http://blog.docker.com/2015/06/

open-container-project-foundation/

tion have been available for a number of years.

For example Solaris containers have been avail-

able as part of the Solaris operating system since

2005, and cgroups and namespaces have been part

of the Linux kernel since 2007.

Although both the speed and simplicity of Docker

containers have been factors contributing to its

rapid adoption, arguably it is the development of

a standardized format for describing and manag-

ing software containers that has been the ‘unique

selling point’ differentiating Docker from its com-

petitors6,7, and has been the main driving force

behind the rapid adoption of Docker across such

a wide range of different applications:

6http://www.zdnet.com/article/

what-is-docker-and-why-is-it-so-darn-popular/
7http://www.americanbanker.

com/news/bank-technology/

why-tech-savvy-banks-are-gung-ho-about-container-software-1078145-1.

html/

5

http://www.infoq.com/news/2013/03/Docker
https://www.dotcloud.com/
https://www.opencontainers.org/
http://blog.docker.com/2015/06/open-container-project-foundation/
http://blog.docker.com/2015/06/open-container-project-foundation/
http://www.zdnet.com/article/what-is-docker-and-why-is-it-so-darn-popular/
http://www.zdnet.com/article/what-is-docker-and-why-is-it-so-darn-popular/
http://www.americanbanker.com/news/bank-technology/why-tech-savvy-banks-are-gung-ho-about-container-software-1078145-1.html/
http://www.americanbanker.com/news/bank-technology/why-tech-savvy-banks-are-gung-ho-about-container-software-1078145-1.html/
http://www.americanbanker.com/news/bank-technology/why-tech-savvy-banks-are-gung-ho-about-container-software-1078145-1.html/
http://www.americanbanker.com/news/bank-technology/why-tech-savvy-banks-are-gung-ho-about-container-software-1078145-1.html/


• at the end user level, Docker enables users

to describe, share and manage applications

and services using a common interface by

wrapping them in standardized containers;

• from a developer’s perspective, Docker makes

it easy to create standard containers for their

software applications or services;

• from a system administrator’s perspective,

Docker makes easy to automate the deploy-

ment and management of business level ser-

vices as a collection of standard containers.

3.1. Docker, DevOps and MicroServices

In a ‘DevOps’ (development and operations)

environment, software developers and system ad-

ministrators work together to develop, deploy and

manage ‘enterprise’ level services. Describing the

deployment environment using Docker contain-

ers enables the development team to treat system

infrastructure as code, applying the same tools

they use for managing the software source code,

e.g. source control, automated testing etc. to the

infrastructure configuration. Moreover Docker has

emerged as one of the key technologies for au-

tomating the continuous delivery and continuous

deployment of MicroService based architectures:

“in 2014, no one mentioned Docker

. . . in 2015, if they don’t mention Docker,

then they aren’t paying attention”

[The State of the Art in Microservices by Adrian

Cockcroft, Jan 2015]8

3.2. Reproducible science

In the science and research community, Docker’s

ability to describe a software deployment envi-

ronment has the potential to improve the repro-

ducibility and the sharing of data analysis meth-

ods and techniques:

• Boettiger (2014) describes how the ability

to publish a detailed description of a soft-

ware environment alongside a research pa-

per enables other researchers to reproduce

and build on the original work;

• Nagler et al. (2015) describes work to de-

velop containerized versions of software tools

used to analyse data from particle accelera-

tors9;

• the Nucletid project10 provides reproducible

evaluation of genome assemblers using docker

containers;

• the BioDocker11 project provides a curated

set of bioinformatics software using Docker

containers.

8https://www.youtube.com/watch?v=pwpxq9-uw_

0&t=160
9https://github.com/radiasoft/containers

10http://nucleotid.es/
11http://biodocker.org/docs/

6

https://www.youtube.com/watch?v=pwpxq9-uw_0&t=160
https://www.youtube.com/watch?v=pwpxq9-uw_0&t=160
https://github.com/radiasoft/containers
http://nucleotid.es/
http://biodocker.org/docs/


3.3. Compute resource services

There are two roles in which Docker may be

useful in implementing systems which enable end

users to submit their own code to a compute re-

source for execution within a data center. Docker

can be used internally to provide the virtualiza-

tion layer for deploying and managing the execu-

tion environments for the submitted code. This

scenario is already being evaluated by a number

of groups, in particular Docker is one of the tech-

nologies being used to deliver a PaaS infrastruc-

ture for the European Space Agency’s Gaia mis-

sion archive (O’Mullane, 2016; Ferreruela, 2016).

Alternatively, Docker can be used as part of

the public service interface, providing the stan-

dard language for describing and packaging the

software. In this scenario, the user would package

their software in a container and then either sub-

mit the textual description or the binary container

image to the service for execution. The advantage

of this approach is that the wrapping of analysis

software in a standard container enables the user

to build and test their software on their own plat-

form before submitting it to the remote service

for execution. The common standard for the con-

tainer runtime environment means that the user

can be confident that their software will behave in

the same manner when tested on a local platform

or deployed on the remote service.

3.4. Reproducible deployment

It is often the case that a development team

do not have direct control over the software envi-

ronment where their service will be deployed. For

example, the deployment platform may be con-

figured with versions of operating system, Java

runtime and Tomcat webserver which are deter-

mined by the requirements of other applications

already running on the machine and by the sys-

tem administrators running the system. This can

present problems when attempting to update the

version of these infrastructure components. Un-

less it is possible to isolate the different compo-

nents from each other then a system component

cannot be updated unless all of the other compo-

nents that interact with it can be updated at the

same time.

With an OS virtualization technology like Docker,

each application can be wrapped in a container

configured with a specific version of operating sys-

tem, language runtime or webserver. The com-

mon interface with the system is set at the con-

tainer level, not at the operating system, language

or application server level. In theory it is possible

to do something similar using hardware virtual-

ization VMs. However, in practice the size and

complexity of the virtual machine image makes it

difficult to do this in a portable manner.

In a container based approach to service de-

ployment, the development process includes a con-

tainer specifically designed for the service. The

7



same container is used during the development

and testing of the software and becomes part of

the final project deliverable. The final product is

shipped and deployed as the container, with all of

its dependencies already installed, rather than as

an individual software component which requires

a set of libraries and components that need to be

installed along with it. This not only simplifies

the deployment of the final product, it also makes

it more reproducible.

4. Deploying IVOATEX with Docker

As an early experiment in using containers to

deploy applications, we used Docker to wrap the

IVOATEX12 document build system to make it

easier to use. The IVOATEX system uses a com-

bination of LaTeX tools and libraries, a compiled

C program to handle LaTeX to HTML conversion,

and a makefile to manage the build process.

The IVOATEX includes a fairly clear set of

install instructions. However, the instructions are

specific to the Debian Linux distribution and port-

ing them to a different Linux distribution is not

straight forward. In addition, it was found that

in some instances configuring a system with the

libraries required by the IVOATEX system con-

flicted with those required by other document styles.

Installing the full IVOATEX software makes

sense for someone who would be using it regu-

larly. However, installing and configuring all of

12http://www.ivoa.net/documents/Notes/IVOATex

the required components is a complicated process

for someone who just wants to make a small edit

to an existing IVOA document. In order to ad-

dress this we created a simple Docker container

that incorporates all of the components needed to

run the IVOATEX system configured and ready to

run. (The source code for the project is available

on GitHub13 and a binary image of the container

is available from the Docker registry14).

The source for the project consists of a build

file, the Dockerfile, which starts with a basic

Debian image and installs the required set of soft-

ware libraries, including the C compiler, a set of

HTML editing tools and the LaTeX tools and

libraries needed to support the IVOATEX doc-

ument build system. Due to the way that the

IVOATEX build system is designed, the C cource

code for the LaTeX to HTML translator is in-

cluded as part of the document source and does

not need to be included in the container.

To provide access to the document source, we

use the pwd command to mount the current direc-

tory from the host system as /texdata inside the

container.

13https://github.com/ivoa/ivoatex
14https://hub.docker.com/r/ivoa/ivoatex/

8

http://www.ivoa.net/documents/Notes/IVOATex
https://github.com/ivoa/ivoatex
https://hub.docker.com/r/ivoa/ivoatex/


docker run

--volume "$(pwd):/texdata"

"ivoa/ivoatex"

and once inside the container we can use the

make commands to build the document.

cd /texdata

make clean

make biblio

make

The initial idea for this project came as a re-

sult of reading about the work done by Jessie

Frazelle on using Docker to wrap desktop appli-

cations [Docker Containers on the Desktop, Jessie

Frazelle, Feb 2015]15.

At the time when this project was originally

developed, using Docker in this way revealed a

significant security issue.

When run from the command line like this,

the Docker run command does not run the con-

tainer directly, instead it uses a socket connec-

tion to send the run command to the Docker ser-

vice, which runs the container on your behalf. A

side effect of this is that the defult user id inside

the container, root, has root privileges outside the

container as well. This normally isn’t a problem,

unless you use the volume option to make a direc-

tory on the host platform accessible from inside

the container, which is exactly what we need to do

15https://blog.jessfraz.com/post/

docker-containers-on-the-desktop/

to enable the ivoatex tools to access the document

text.

In our case, this doesn’t prevent our program

from working, but it does mean that the resulting

PDF and HTML documents end up being owned

by root, which make it difficult for the normal user

to delete them.

To solve this we used a shell script to intercept

the entrypoint command and use the sudo com-

mand to set the user id before running the main

command. To set this to the current user id, we

add an /env option to pass the current user id to

the notroot startup script.

docker run

--env "useruid=$(id -u)"

--volume "$(pwd):/texdata"

"ivoa/ivoatex"

However, this does highlight a more generic

and potentially more serious problem. Consider

the following commands.

If we create a standard Debian container, and

mount the /etc directory from the host system

as /albert inside the container.

docker run

--volume "/etc:/albert"

"debian"

bash

Then, inside the container, we run the vi text

editor and edit the file /albert/passwd.

9

https://blog.jessfraz.com/post/docker-containers-on-the-desktop/
https://blog.jessfraz.com/post/docker-containers-on-the-desktop/


vi /albert/passwd

The result of the volume mount means that vi

running inside the container is editing the passwd

file outside the container, with root privileges on

the host system.

It is important to note that this issue is not

caused by a security weakness in the container

or in the Docker service. The issue occurs be-

cause the user that runs a container has direct

control over what resources on the host system

that container is allowed to access. Without the

/volume mount, the container would not be able

to access any files on the host system and there

would be no problem. This is not normally an

issue, because users would not normally have suf-

ficient privileges to run Docker containers from

the command line. In most cases users would not

run containers directly on a production system,

they would be given access to a container manage-

ment program like Kubernetes16 or OpenStack17

to manage their containers. In addition, most

Linux distributions now have security constraints

in place which prevent containers from accessing

sensitive locations on the file system. For exam-

ple, on RedHat based systems the SELinux secu-

rity module prevents containers from accessing a

location on the file system unless it has explicitly

been granted permission to do so.

Finally, it is important to note that this prob-

16http://kubernetes.io/
17https://www.openstack.org/

lem was an issue when we were first developing

the ivoatex container, in March 2015. Since then,

container technology has continued to evolve and

there has been significant progress in a number

areas that addresses this issue. In particular the

work within Docker on user namespaces18,19, but

also the work in the Open Containers project20

enabling containers to run as non-privileged users

on the host system21,22.

5. Docker in Firethorn

5.1. Firethorn overview

The goal of the Firethorn project is to enable

users to run queries and store results from lo-

cal astronomy archive or remote IVOA relational

databases and share these results with others by

publishing them via a TAP service 23. The project

has it’s origins in a prototype data resource fed-

eration service (Hume et al., 2012) and is built

around the Open Grid Service Architecture Data

Access Infrastructure (OGSA-DAI; Holliman et al.

2011 and references therein).

18https://integratedcode.us/2015/10/13/

user-namespaces-have-arrived-in-docker/
19https://docs.docker.com/engine/

reference/commandline/dockerd/

#daemon-user-namespace-options
20https://runc.io/
21https://github.com/opencontainers/runc/

issues/38
22https://blog.jessfraz.com/post/

getting-towards-real-sandbox-containers/
23http://www.ivoa.net/documents/TAP/

10

http://kubernetes.io/
https://www.openstack.org/
https://integratedcode.us/2015/10/13/user-namespaces-have-arrived-in-docker/
https://integratedcode.us/2015/10/13/user-namespaces-have-arrived-in-docker/
https://docs.docker.com/engine/reference/commandline/dockerd/#daemon-user-namespace-options
https://docs.docker.com/engine/reference/commandline/dockerd/#daemon-user-namespace-options
https://docs.docker.com/engine/reference/commandline/dockerd/#daemon-user-namespace-options
https://runc.io/
https://github.com/opencontainers/runc/issues/38
https://github.com/opencontainers/runc/issues/38
https://blog.jessfraz.com/post/getting-towards-real-sandbox-containers/
https://blog.jessfraz.com/post/getting-towards-real-sandbox-containers/
http://www.ivoa.net/documents/TAP/


Figure 2: Firethorn architecture illustrating the components connecting local data resources and those distributed on

the wide–area network.

11



The system architecture consists of two sepa-

rate Java web services, one for handling the ab-

stract ADQL catalog metadata, and one for han-

dling the SQL queries and processing the results,

two SQLServer databases, one for storing the cat-

alog metadata and one for storing the user data, a

Python user interface web service, and a Python

testing tool. A schematic representation is shown

in Figure 2.

5.2. Virtual Machine allocation and Container-

ization

At the beginning of the project we assigned a

full KVM24 virtual machine to each of our Java

web services, connected to a Python webapp run-

ning on the physical host which provided the user

interface web pages (see Figure 3; each VM was

manually configured).

Figure 3: Manually configured VM for each web applica-

tion.

24http://www.linux-kvm.org/page/Main_Page

Assigning a full virtual machine to each com-

ponent represented a fairly heavy cost in terms

of resources. However, at the time, this level of

isolation was needed to support the different ver-

sions of Python, Java and Tomcat required by

each of the components. Using virtual machines

like this gave us an initial level of isolation from

the physical host machine configuration. In the-

ory it also allowed us to run more than one set

of services on the same physical platform, while

still being able to configure each set of services

independently without impacting other services

running on the same physical hardware.

However, in practice it was not until we moved

from using manually configured virtual machines

to using a set of shell scripts based on the ischnura-

kvm25 project to automate the provisioning of new

virtual machines that we were able to run multiple

sets of services in parallel. Replacing the manu-

ally configured instances with the template based

instances gave us the reliable and consistent set

of platforms we needed to develop our automated

integration tests (see Figure 4).

25https://github.com/Zarquan/ischnura-kvm

12

http://www.linux-kvm.org/page/Main_Page
https://github.com/Zarquan/ischnura-kvm


Figure 4: Multiple sets of scripted VM configurations.

The ischnura-kvm templates handle the ba-

sic virtual machine configuration such as cpu and

memory allocation, network configuration, disk

space and operating system.

Once the virtual machines were created, we

used a set of shell scripts to automate the instal-

lation of the software packages needed to run each

of our services. For our Java web-services, this

included installing and configuring specific ver-

sions of the Java runtime26 and Apache Tomcat27.

The final step in the process was to deploy our

web service and configure them with the user ac-

counts and passwords needed to access the local

databases.

The first stage of containerization was to cre-

ate Docker containers for the two main Java/Tomcat

web services, leaving the final Python webapp

running in Apache web server on the physical

host. The process of building the two Java/Tomcat

26http://openjdk.java.net/
27http://tomcat.apache.org/

web service containers was automated using the

Maven Docker plugin28 from Alex Collins29. Fig-

ure 5 illustrates this first stage.

Figure 5: First stage containerization (Tomcats but not

Apache).

5.3. Using pre-packaged or in–house base images

We ended up using our own containers as the

base images for our Java and Tomcat web ser-

vices, rather than the official Java30 and Tomcat31

images available on the Docker registry. The rea-

son for this was partially as result of our early

experiments with Docker where we explored dif-

ferent methods of creating containers from simple

Linux base images but primarily because in the

end this gave us more control over the contents

of our containers. The flexibility of the container

28https://github.com/alexec/

docker-maven-plugin
29https://github.com/alexec
30https://hub.docker.com/_/java/
31https://hub.docker.com/_/tomcat/

13

http://openjdk.java.net/
http://tomcat.apache.org/
https://github.com/alexec/docker-maven-plugin
https://github.com/alexec/docker-maven-plugin
https://github.com/alexec
https://hub.docker.com/_/java/
https://hub.docker.com/_/tomcat/


build system means that we were able to swap be-

tween base containers by changing one line in a

Docker buildfile and re-building. This enabled us

to test our containers using a variety of different

base images, and work towards standardizing on

a common version of Python, Java and Tomcat

for all of our components.

Based on our experience we would recommend

that other projects follow a similar route and de-

fine their own set of base images to build their

containers, rather than using the pre-packaged

images available from the Docker registry. The

latter are ideal for rapid prototyping, but there

are some issues that mean they may not be suit-

able for use in a production environment. Al-

though the Docker project is working to improve

and to verify the official images32, there is still a

lot of work to be done in this area. The main is-

sue with using a pre-packaged base images is that

the contents of containers are directly dependent

on how the 3rd party image was built and what it

contains. Unless full details of what the 3rd party

image contains are available it can be difficult to

asses the impact of a security issue in a common

component such as OpenSSL33,34 or glibc35,36,37

32https://docs.docker.com/docker-hub/official_

repos/
33http://heartbleed.com/
34https://cve.mitre.org/cgi-bin/cvename.cgi?

name=cve-2014-0160
35https://www.kb.cert.org/vuls/id/457759
36https://cve.mitre.org/cgi-bin/cvename.cgi?

name=CVE-2015-7547
37http://arstechnica.co.uk/security/2016/02/

has on a system that depends on an opaque 3rd

party image.

5.4. Ambassador Pattern

At this point in the project we also began to

use the Docker ambassador pattern38 for man-

aging the connections between our webapps and

databases. The idea behind the ambassador pat-

tern is to use a small lightweight container run-

ning a simple proxy service like socat39 to manage

a connection between a Docker container and an

external service.

In our case, the two socat proxies in Docker

containers makes the relational database appear

to be running in another container on the same

Docker host, rather than on a separate physi-

cal machine. This enables our service orchestra-

tion scripts to connect our web services to our

database server using Docker container links. The

arrangement is shown schematically in Figure 6.

extremely-severe-bug-leaves-dizzying-number-of-apps-and-devices-vulnerable/
38http://docs.docker.com/engine/articles/

ambassador_pattern_linking/
39http://www.dest-unreach.org/socat/

14

https://docs.docker.com/docker-hub/official_repos/
https://docs.docker.com/docker-hub/official_repos/
http://heartbleed.com/
https://cve.mitre.org/cgi-bin/cvename.cgi?name=cve-2014-0160
https://cve.mitre.org/cgi-bin/cvename.cgi?name=cve-2014-0160
https://www.kb.cert.org/vuls/id/457759
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2015-7547
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2015-7547
http://arstechnica.co.uk/security/2016/02/extremely-severe-bug-leaves-dizzying-number-of-apps-and-devices-vulnerable/
http://arstechnica.co.uk/security/2016/02/extremely-severe-bug-leaves-dizzying-number-of-apps-and-devices-vulnerable/
http://arstechnica.co.uk/security/2016/02/extremely-severe-bug-leaves-dizzying-number-of-apps-and-devices-vulnerable/
http://arstechnica.co.uk/security/2016/02/extremely-severe-bug-leaves-dizzying-number-of-apps-and-devices-vulnerable/
http://arstechnica.co.uk/security/2016/02/extremely-severe-bug-leaves-dizzying-number-of-apps-and-devices-vulnerable/
http://arstechnica.co.uk/security/2016/02/extremely-severe-bug-leaves-dizzying-number-of-apps-and-devices-vulnerable/
http://arstechnica.co.uk/security/2016/02/extremely-severe-bug-leaves-dizzying-number-of-apps-and-devices-vulnerable/
http://arstechnica.co.uk/security/2016/02/extremely-severe-bug-leaves-dizzying-number-of-apps-and-devices-vulnerable/
http://arstechnica.co.uk/security/2016/02/extremely-severe-bug-leaves-dizzying-number-of-apps-and-devices-vulnerable/
http://arstechnica.co.uk/security/2016/02/extremely-severe-bug-leaves-dizzying-number-of-apps-and-devices-vulnerable/
http://arstechnica.co.uk/security/2016/02/extremely-severe-bug-leaves-dizzying-number-of-apps-and-devices-vulnerable/
http://arstechnica.co.uk/security/2016/02/extremely-severe-bug-leaves-dizzying-number-of-apps-and-devices-vulnerable/
http://arstechnica.co.uk/security/2016/02/extremely-severe-bug-leaves-dizzying-number-of-apps-and-devices-vulnerable/
http://arstechnica.co.uk/security/2016/02/extremely-severe-bug-leaves-dizzying-number-of-apps-and-devices-vulnerable/
http://arstechnica.co.uk/security/2016/02/extremely-severe-bug-leaves-dizzying-number-of-apps-and-devices-vulnerable/
http://arstechnica.co.uk/security/2016/02/extremely-severe-bug-leaves-dizzying-number-of-apps-and-devices-vulnerable/
http://arstechnica.co.uk/security/2016/02/extremely-severe-bug-leaves-dizzying-number-of-apps-and-devices-vulnerable/
http://arstechnica.co.uk/security/2016/02/extremely-severe-bug-leaves-dizzying-number-of-apps-and-devices-vulnerable/
http://arstechnica.co.uk/security/2016/02/extremely-severe-bug-leaves-dizzying-number-of-apps-and-devices-vulnerable/
http://arstechnica.co.uk/security/2016/02/extremely-severe-bug-leaves-dizzying-number-of-apps-and-devices-vulnerable/
http://arstechnica.co.uk/security/2016/02/extremely-severe-bug-leaves-dizzying-number-of-apps-and-devices-vulnerable/
http://docs.docker.com/engine/articles/ambassador_pattern_linking/
http://docs.docker.com/engine/articles/ambassador_pattern_linking/
http://www.dest-unreach.org/socat/


Figure 6: Socat ambassadors for connections to a rela-

tional database. .

At first glance, adding socat proxies like this

may seem to be adding unnecessary complication

and increasing network latency for little obvious

gain. The benefit comes when we want to mod-

ify the system to support developers working re-

motely on platforms outside the institute network

firewall who need to be able to run the set of ser-

vices on their local system but still be able to con-

nect to the relational database located inside the

firewall. In this scenario (illustrated schematically

in Figure 7) a small change to the Docker orches-

tration script replaces the socat proxy containers

with proxy containers that use a tunneled ssh con-

nection to link to the remote relational database

located inside the institute network firewall.

Figure 7: SSH ambassadors for connections to relational

databases.

5.5. Python GUI and Python Testing

The final stage in the migration to Docker con-

tainers was to wrap the Python/Apache interface

in a container and add that to our set of images.

This is illustrated in Figure 8.

15



Figure 8: Multiple sets of containers, for live services and

testing.

The Python-based webapp that provides the

user interface consisted of an SQL proxy container

that linked to our database for storing user queries,

an Apache container which was built on an Ubuntu

image, a base Python and a “python-libraries“

container and finally a webpy40 container, sitting

at the top of the Apache/Python container stack.

An additional webpy web interface was later

developed for a separate project (Gaia European

Network for Improved User Services; e.g. Hypki

and Brown 2016), which used the distributed query-

ing feature of Firethorn. Because of the sepa-

ration of the interfaces, Firethorn web services

and databases into containers and the modular

design of Docker systems, attaching this new in-

terface container to a Firethorn docker chain was

seamless. Linking a configuration file and startup

40http://webpy.org/

script when running the webapp, a common tech-

nique when deploying webapp containers which

makes the interchange of components in the sys-

tem chain easier, was also used in both.

Another example of a top-level container used

in our system, was the testing suite that we used

to test our system for performance and accuracy,

also written in Python. This consisted of a num-

ber of possible tests, which would each launch an

instance of the Firethorn Docker chain, as well as

a number of other required containers for each,

either for databases to log results, or for loading

and running the test suite code. By the end of the

project we employed a set of bash scripts that al-

lowed us to run a one–line command to start the

required test, which we would run on any VM.

The bash scripts were used to deploy and link

the desired Docker container instances, however

we have since learned of Docker Compose41 which

makes this process simpler. These were long run-

ning tests, which helped us gauge how the sys-

tem run using Docker containers would behave

and scale with large data volumes and long-term

up-time and whether Docker as a technology was

production–ready or not.

The result is a set of plug–and–play contain-

ers for each component in our system that can

be be swapped and replaced with different ver-

sions or different implementations by modifying

the scripts that manage the container orchestra-

41https://docs.docker.com/compose/

16

http://webpy.org/
https://docs.docker.com/compose/


tion.

A live deployment would include the Python

webapp for the user interface, and use socat prox-

ies to connect to the local relational databases.

In the test and development scenarios we replace

the Python/Apache webapp with a Python test

client connected to a local MySQL database run-

ning in a container, and in some cases we also

replaced the connection to the SQLServer meta-

data database for our FireThorn webapp with a

PostgreSQL database running in a container.

5.6. Orchestrating build and deployment

All of our containers are managed by a set of

shell scripts which are included and maintained as

part of the project source code. The Docker build

scripts and the container orchestration scripts re-

quired to build and deploy a full set of services for

each of our use cases are all stored in our source

control repository alongside the source code for

the rest of our project. Automating the service

deployment, and treating the build and deploy-

ment scripts as part of the core project source

code is a key step towards implementing what is

referred to as Programmable Infrastructure or In-

frastructure as code42,43.

42http://devops.com/2014/05/05/

meet-infrastructure-code/
43https://www.thoughtworks.com/insights/blog/

infrastructure-code-reason-smile/

5.7. Portability and Reproducibility

One of the key reasons for choosing Docker

to deploy our systems was the level of portability

and reproducibility it provides. Within our devel-

opment process our software has to be able to run

on a number of different platforms, including the

developers desktop computer, the integration test

systems and our live deployment system. In addi-

tion, a key requirement of our project is that the

software must be able to be deployed at a number

of different 3rd party data centres, each of which

would have a slightly different operating system

and runtime environment.

If we rely on manual configuration for the tar-

get platform and runtime environment, then it is

almost inevitable that they end up being slightly

different. Even something as simple as the version

of Java or Tomcat used to run the web application

can be difficult to control fully. We could, in the-

ory, mandate a specific version and configuration

of the software stack used to develop, test and de-

ploy our software. In reality, unless the platform

is created and managed by an automated process,

then some level of discrepancy will creep in, often

when it is least expected.

There are a number of different ways of achiev-

ing this level of automation. A common method

of managing a large set of systems is to use an au-

tomated configuration management tool, such as

17

http://devops.com/2014/05/05/meet-infrastructure-code/
http://devops.com/2014/05/05/meet-infrastructure-code/
https://www.thoughtworks.com/insights/blog/infrastructure-code-reason-smile/
https://www.thoughtworks.com/insights/blog/infrastructure-code-reason-smile/


Puppet44 or Chef45, to manage the system config-

uration based on information held in a centrally

controlled template. Another common practice

is to use a continuous integration platform such

as Jenkins46 to automate the testing and deploy-

ment. These techniques are not exclusive, and it

is not unusual to use an automated configuration

management tool such as Puppet to manage the

(physical or virtual) hardware platform, in com-

bination with a continuous integration platform

such as Jenkins to manage the integration test-

ing, and in some cases the live service deployment

as well. However, these techniques are only really

applicable when one has direct control over the

deployment platform and the environment around

it. In our case, we knew that although we had

control over the environment for our own deploy-

ments, we would not have the same level of control

over deployments at 3rd party sites.

6. Issues found

It is of course expected that issues and prob-

lems arise when using new technologies for the

first time. These might be caused by mistakes

made while overcoming the learning curve or by

software bugs in the technology itself, which may

have not been uncovered yet while adoption of the

technology is still growing, and all possible usages

of it have not been visited yet. We document here

44https://puppetlabs.com/
45https://www.chef.io/chef/
46https://wiki.jenkins-ci.org/

an example of one of the issues we encountered,

including how we solved it.

6.1. Memory issue

As part of our Firethorn project we developed

a testing suite written in Python as mentioned

above. This suite included some long–running

tests, which iterated a list of user submitted SQL

queries that had been run through our systems

in the past, running the same query via a direct

route to the RDBMS as well as through the new

Firethorn system and comparing the results. This

list scaled up to several thousand queries, which

meant that a single test pass for a given cata-

logue could take several days to complete. The

issue we encountered here was that the docker

process was being killed after a number of hours,

with Out of memory error messages. An initial

attempt at solving the problem was to set mem-

ory limits to all of our containers, which changed

the symptoms and then caused our main Tom-

cat container to fail with memory error messages.

After a few iterations of attempting to run the

chain with different configurations, the solution

was found through community forums, when we

discovered that several other people were encoun-

tering the same symptoms with similar setups.

Specifically, the problem was due to a memory

leak, caused by the logging setup the version of

Docker that we were using (1.6). Output sent to

the system stdout was being stored in memory

causing a continuous buffer growth resulting in a

18

https://puppetlabs.com/
https://www.chef.io/chef/
https://wiki.jenkins-ci.org/


memory leak47,48.

7. Lessons learned

More important than an analysis of the issues

themselves is the understanding of the process un-

dertaken to discover and solve them. In the exam-

ple described above, the solution that we adopted

was to use the volume option to send the system

output and logs from our container processes to a

directory outside the container.

docker run

...

--volume "/var/logs/firethorn/

:/var/local/tomcat/logs"

...

"firethorn/firethorn:2.0"

We learned several valuable lessons through

the process of researching how other developers

managed these problems, for example, the ap-

proach to logging where the logs of a container are

stored separately from the container itself, mak-

ing it easier to debug and follow the system logs.

In addition, we benefited from learning how and

why limiting memory for each container was an

important step when building each of our con-

tainers.

A fix for this issue was added to the Docker

source code in November 2015 [Cap the amount of

47https://github.com/docker/docker/issues/9139
48https://github.com/coreos/bugs/issues/908

buffering done by BytesPipe, GitHub pull request

#17877, Nov 2015] 49 and released in Docker ver-

sion 1.10.

In addition, Docker added a pluggable driver

based framework for handling logging [Logging

drivers, GiitHub pull request #10568, Mar 2015]

50 [The State of Logging on Docker: Whats New

with 1.7, Jun 2015] 51 which provides much more

control over how logging output from processes

running in the container is handled [Configure log-

ging drivers, Docker user manual] 52.

7.1. Docker community

An important point to make here, is in regard

to the open-source nature and culture of Docker

and the Docker community. The main takeaway

from this was that both finding how to go about

solving issues related to containers and figuring

out how the preferred method of implementing a

certain feature is easy enough as doing a search of

the keywords related to what you need. This can

be done by either using a generic search engine or

visiting the sources where the main Docker com-

munity interaction takes place [General discus-

sion, Docker Community Forums] 53 [Questions

49https://github.com/docker/docker/pull/17877
50https://github.com/docker/docker/pull/10568
51https://blog.logentries.com/2015/06/

the-state-of-logging-on-docker-whats-new-with-1-7/
52https://docs.docker.com/engine/reference/

logging/overview/
53https://forums.docker.com/c/

general-discussions/general

19

https://github.com/docker/docker/issues/9139
https://github.com/coreos/bugs/issues/908
https://github.com/docker/docker/pull/17877
https://github.com/docker/docker/pull/10568
https://blog.logentries.com/2015/06/the-state-of-logging-on-docker-whats-new-with-1-7/
https://blog.logentries.com/2015/06/the-state-of-logging-on-docker-whats-new-with-1-7/
https://docs.docker.com/engine/reference/logging/overview/
https://docs.docker.com/engine/reference/logging/overview/
https://forums.docker.com/c/general-discussions/general
https://forums.docker.com/c/general-discussions/general


tagged with ’docker’, Stack Overflow] 54 [Docker

project, GitHub issues] 55.

Because Docker is an open source solution, it

has an active open source community behind it

which enables users to find and fix issues more

efficiently. An open source community means it

is more likely that any issue you might find has

already been encountered by someone else, and

just as likely that it has been solved officially (as

part of a bug fix in Docker release) or unofficially

(Community member:Here is how I solved this

problem). Contrast this with encountering issues

using some proprietary technology with a more

limited number of users, with a much slower pace

of updating versions and bug-fixing.

While Docker’s source code is open to the pub-

lic, perhaps more importantly so is its issue track-

ing system. Apart from the fact that issues will

get raised and solved quicker naturally with more

eyes on them, another advantage for the users of

such a platform is that they get the opportunity

to contribute and help steer the direction it takes,

by either raising issues or adding comments to the

issue tracking system or the discussion forums.

This leads to the targets for each new release be-

ing closely tied with what the majority of the com-

munity raises as important issues or requests for

future enhancements.

Another key point to note is how we bene-

54http://stackoverflow.com/questions/tagged/

docker
55https://github.com/docker/docker/issues

fited from Dockers support team as well as the

number of early adopters. We decided to take up

Docker at an early stage, which can be considered

its “bleeding-edge“ phase (Version 1.6), at which

point it was more likely to discover issues. How-

ever, with the large team and strong technological

support of its developers, as well as the signif-

icant number of early adopters, new releases to

solve bugs or enhance usability and performance

were issued frequently. Consequently, after some

research, we realized that many of the issues we

found, whether they could be considered bugs or

usability improvements needed, were often fixed

in subsequent releases, meaning that by updating

our Docker version they would be solved.

7.2. Future of Docker in Astronomy and Science

Based on our experience in development and

production for the Firethorn and IVOATEXprojects,

we anticipate a rapid growth of interest and usage

of Docker and container-based solutions in gen-

eral. We expect that this will be the case for both

developing and deploying systems as a replace-

ment or complementary to exiting hardware vir-

tualization technologies, in enabling reproducible

science and in system that allow scientists to sub-

mit their own code to data centers.

In terms of the future of Docker in relation

to the Open Container Initiative (OCI), there is

the potential for a common container standard to

emerge, with the Docker project playing a lead-

ing role in the shaping of this standard. It should

20

http://stackoverflow.com/questions/tagged/docker
http://stackoverflow.com/questions/tagged/docker
https://github.com/docker/docker/issues


be noted that as explicitly stated by the OCI,

given the broad adoption Docker, the new stan-

dard will be as backward compatible as possible

with the existing container format. Docker has al-

ready been pivotal in the OCI by donating draft

specifications and code, so we expect any stan-

dard that emerges from this process will be closely

tied with what exists now in Docker.

8. Conclusion

As mentioned throughout this paper, some of

the main takeaways we noted from the use of

Docker in development and production are the

ease it provides in bundling components together,

providing re-usability, maintainability, faster con-

tinuous integration environments and better col-

laboration between developers.

In addition, the openness of Docker and its

community has contributed to its popularity in

both science and business systems.

We briefly mentioned reproducible science and

results of experiments, which along with author-

ship bias has been discussed in the scientific com-

munity for a while, but without any clear solu-

tions. While scientists are more frequently pub-

lishing their code and data, the ability to re-run

an analysis and obtain the same results is often

non-trivial. Docker can potentially help with this,

as it provides the tools and simplicity that scien-

tists need to recreate the environment that was

used to generate a set of test results.

Docker is not the perfect solution, and scien-

tists or system engineers must decide when and if

it is a suitable tool for their specific needs. It is

most applicable in situations where reproducibil-

ity and portability are high on the list of require-

ments.

When deciding on whether to adopt a con-

tainer technology such as Docker our experience

would suggest that the benefits in terms of re-

usability, maintainability and portability repre-

sent a significant benefit to the project as a whole

and in most cases we would expect the benefits to

outweigh the costs in terms of learning and adopt-

ing a new technology.

Acknowledgements

The research leading to these results has re-

ceived funding from

• The European Community’s Seventh Frame-

work Programme (FP7-SPACE-2013-1) un-

der grant agreement n606740,

• The European Commission Framework Pro-

gramme Horizon 2020 Research and Innova-

tion action under grant agreement n. 653477

• The UK Science and Technology Facilities

Council under grant numbers ST/M001989/1,

ST/M007812/1, and ST/N005813/1

References

Alam, S., Albareti, F.D., Allende Prieto, C., Anders, F.,

Anderson, S.F., Anderton, T., Andrews, B.H., Armen-

21



gaud, E., Aubourg, É., Bailey, S., et al., 2015. The

Eleventh and Twelfth Data Releases of the Sloan Digi-

tal Sky Survey: Final Data from SDSS-III. Astrophys.

J. Suppl. S 219, 12. doi:10.1088/0067-0049/219/1/12,

arXiv:1501.00963.

Arviset, C., Gaudet, S., IVOA Technical Coordi-

nation Group, 2010. The ivoa architecture,

version 1.0. IVOA Note, 23 November 2010.

URL: http://www.ivoa.net/documents/Notes/

IVOAArchitecture/index.html.

Boettiger, C., 2014. An introduction to Docker for re-

producible research, with examples from the R environ-

ment. ArXiv e-prints arXiv:1410.0846.

Cross, N.J.G., Collins, R.S., Mann, R.G., Read, M.A.,

Sutorius, E.T.W., Blake, R.P., Holliman, M., Hambly,

N.C., Emerson, J.P., Lawrence, A., Noddle, K.T., 2012.

The VISTA Science Archive. aap 548, A119. doi:10.

1051/0004-6361/201219505, arXiv:1210.2980.

Demleitner, M., Taylor, M., Harrison, P., Molinaro, M.,

2016. The ivoatex document preparation system. IVOA

Note, 30 April 2016. URL: http://www.ivoa.net/

documents/Notes/IVOATex/index.html.

Ferreruela, V., 2016. Gavip gaia avi portal, collabora-

tive paas for data-intensive astronomical science, in:

Lorente, N.P.F., Shortridge, K. (Eds.), ADASS XXV,

ASP, San Francisco. p. TBD.

Flewelling, H., 2015. Public Release of Pan-STARRS Data.

IAU General Assembly 22, 2258174.

Gaudet, S., 2015. CADC and CANFAR: Extending the

role of the data centre, in: Science Operations 2015:

Science Data Management - An ESO/ESA Workshop,

held 24-27 November, 2015 at ESO Garching. Online at

https://www.eso.org/sci/meetings/2015/SciOps2015.html,

id.1, p. 1. doi:10.5281/zenodo.34641.

Gaudet, S., Armstrong, P., Ball, N., Chapin, E., Dowler,

P., Gable, I., Goliath, S., Fabbro, S., Ferrarese, L.,

Gwyn, S., Hill, N., Jenkins, D., Kavelaars, J.J., Major,

B., Ouellette, J., Paterson, M., Peddle, M., Pritchet,

C., Schade, D., Sobie, R., Woods, D., Woodley, K.,

Yeung, A., 2011. Virtualization and Grid Utilization

within the CANFAR Project, in: Evans, I.N., Acco-

mazzi, A., Mink, D.J., Rots, A.H. (Eds.), Astronomical

Data Analysis Software and Systems XX, p. 61.

Gaudet, S., Dowler, P., Goliath, S., Hill, N., Kavelaars,

J.J., Peddle, M., Pritchet, C., Schade, D., 2009. The

Canadian Advanced Network For Astronomical Re-

search, in: Bohlender, D.A., Durand, D., Dowler, P.

(Eds.), Astronomical Data Analysis Software and Sys-

tems XVIII, p. 185.

Hambly, N.C., Collins, R.S., Cross, N.J.G., Mann, R.G.,

Read, M.A., Sutorius, E.T.W., Bond, I., Bryant, J.,

Emerson, J.P., Lawrence, A., Rimoldini, L., Stewart,

J.M., Williams, P.M., Adamson, A., Hirst, P., Dye,

S., Warren, S.J., 2008. The WFCAM Science Archive.

Mon. Not. R. Astron. Soc. 384, 637–662. doi:10.1111/

j.1365-2966.2007.12700.x, arXiv:0711.3593.

Holliman, M., Alemu, T., Hume, A., van Hemert, J.,

Mann, R.G., Noddle, K., Valkonen, L., 2011. Service

Infrastructure for Cross-Matching Distributed Datasets

Using OGSA-DAI and TAP, in: Evans, I.N., Acco-

mazzi, A., Mink, D.J., Rots, A.H. (Eds.), Astronomical

Data Analysis Software and Systems XX, p. 579.

Hume, A.C., Krause, A., Holliman, M., Mann, R.G., Nod-

dle, K., Voutsinas, S., 2012. TAP Service Federation

Factory, in: Ballester, P., Egret, D., Lorente, N.P.F.

(Eds.), Astronomical Data Analysis Software and Sys-

tems XXI, p. 359.

Hypki, A., Brown, A.G.A., 2016. Gaia archive. ArXiv

e-prints arXiv:1603.07347.

Jurić, M., Kantor, J., Lim, K., Lupton, R.H., Dubois-

Felsmann, G., Jenness, T., Axelrod, T.S., Aleksić, J.,

Allsman, R.A., AlSayyad, Y., Alt, J., Armstrong, R.,

Basney, J., Becker, A.C., Becla, J., Bickerton, S.J.,

Biswas, R., Bosch, J., Boutigny, D., Carrasco Kind,

M., Ciardi, D.R., Connolly, A.J., Daniel, S.F., Daues,

G.E., Economou, F., Chiang, H.F., Fausti, A., Fisher-

22

http://dx.doi.org/10.1088/0067-0049/219/1/12
http://arxiv.org/abs/1501.00963
http://www.ivoa.net/documents/Notes/IVOAArchitecture/index.html
http://www.ivoa.net/documents/Notes/IVOAArchitecture/index.html
http://arxiv.org/abs/1410.0846
http://dx.doi.org/10.1051/0004-6361/201219505
http://dx.doi.org/10.1051/0004-6361/201219505
http://arxiv.org/abs/1210.2980
http://www.ivoa.net/documents/Notes/IVOATex/index.html
http://www.ivoa.net/documents/Notes/IVOATex/index.html
http://dx.doi.org/10.5281/zenodo.34641
http://dx.doi.org/10.1111/j.1365-2966.2007.12700.x
http://dx.doi.org/10.1111/j.1365-2966.2007.12700.x
http://arxiv.org/abs/0711.3593
http://arxiv.org/abs/1603.07347


Levine, M., Freemon, D.M., Gee, P., Gris, P., Hernan-

dez, F., Hoblitt, J., Ivezić, Ž., Jammes, F., Jevremović,

D., Jones, R.L., Bryce Kalmbach, J., Kasliwal, V.P.,

Krughoff, K.S., Lang, D., Lurie, J., Lust, N.B., Mul-

lally, F., MacArthur, L.A., Melchior, P., Moeyens, J.,

Nidever, D.L., Owen, R., Parejko, J.K., Peterson, J.M.,

Petravick, D., Pietrowicz, S.R., Price, P.A., Reiss, D.J.,

Shaw, R.A., Sick, J., Slater, C.T., Strauss, M.A., Sul-

livan, I.S., Swinbank, J.D., Van Dyk, S., Vujčić, V.,

Withers, A., Yoachim, P., LSST Project, f.t., 2015.

The LSST Data Management System. ArXiv e-prints

arXiv:1512.07914.

Morris, D., 2013. Wide field astronomy

unit (wfau) virtual observatory data ac-

cess service. URL: http://wiki.ivoa.net/

internal/ivoa/interopmay2013applications/

20130508-firethorn-007.pdf.

Nagler, R., Bruhwiler, D., Moeller, P., Webb, S., 2015.

Sustainability and Reproducibility via Containerized

Computing. ArXiv e-prints arXiv:1509.08789.

O’Mullane, W., 2016. Bringing the computing to the data,

in: Lorente, N.P.F., Shortridge, K. (Eds.), ADASS

XXV, ASP, San Francisco. p. TBD.

Quinn, P.J., Barnes, D.G., Csabai, I., Cui, C., Genova,

F., Hanisch, B., Kembhavi, A., Kim, S.C., Lawrence,

A., Malkov, O., Ohishi, M., Pasian, F., Schade, D.,

Voges, W., 2004. The International Virtual Observatory

Alliance: recent technical developments and the road

ahead, in: Quinn, P.J., Bridger, A. (Eds.), Optimizing

Scientific Return for Astronomy through Information

Technologies, pp. 137–145. doi:10.1117/12.551247.

Wang, X.Z., Zhang, H.M., Zhao, J.H., Lin, Q.H., Zhou,

Y.C., Li, J.H., 2015. An Interactive Web-Based Anal-

ysis Framework for Remote Sensing Cloud Comput-

ing. ISPRS Annals of Photogrammetry, Remote Sensing

and Spatial Information Sciences , 43–50doi:10.5194/

isprsannals-II-4-W2-43-2015.

Yu, H.E., Huang, W., 2015. Building a Virtual HPC Clus-

ter with Auto Scaling by the Docker. ArXiv e-prints

arXiv:1509.08231.

Appendix A. Sources of information on Docker

RGM: As noted before, we need to re-

move almost all of the footnotes - ideally re-

placing them with more conventional refer-

ence sources. However, the reality is clearly

that the Docker community develops through

posting online, so it seems reasonable to get

the unusual step for a journal paper and list

some of the online resources that you have

found useful during this process, especially

if they are likely to continue to be sources

of salient information.

Appendix A. Open Container Initiative mem-

bership

• Cloud Services

– Amazon web services - https://aws.amazon.com/

– Google - http://www.google.com/

– Apcera - https://www.apcera.com/

– EMC - http://www.emc.com/

– Joyent - https://www.joyent.com/

– Kyup - https://kyup.com/

– Odin - http://www.odin.com/

– Pivotal - http://pivotal.io/

– Apprenda - https://apprenda.com/

– IBM - http://www.ibm.com/

23

http://arxiv.org/abs/1512.07914
http://wiki.ivoa.net/internal/ivoa/interopmay2013applications/20130508-firethorn-007.pdf
http://wiki.ivoa.net/internal/ivoa/interopmay2013applications/20130508-firethorn-007.pdf
http://wiki.ivoa.net/internal/ivoa/interopmay2013applications/20130508-firethorn-007.pdf
http://arxiv.org/abs/1509.08789
http://dx.doi.org/10.1117/12.551247
http://dx.doi.org/10.5194/isprsannals-II-4-W2-43-2015
http://dx.doi.org/10.5194/isprsannals-II-4-W2-43-2015
http://arxiv.org/abs/1509.08231


• Operating systems & software

– Microsoft - http://www.microsoft.com/

– Oracle - http://www.oracle.com/

– CoreOS - https://coreos.com/

– Redhat - http://www.redhat.com/en

– Suse - https://www.suse.com/

• Container Software

– Docker - https://www.docker.com/

– ClusterHQ - https://clusterhq.com/

– Kismatic - https://kismatic.io/

– Portworx - http://portworx.com/

– Rancher - http://rancher.com/

– Univa - http://www.univa.com/

• Security

– Polyverse - https://polyverse.io/

– Scalock - https://www.scalock.com/

– Twistlock - https://www.twistlock.com/

• Datacenter infrastructure

– Nutanix- http://www.nutanix.com/

– Datera - http://www.datera.io/

– Mesosphere - https://mesosphere.com/

– Weave - http://www.weave.works/

• Computing hardware

– Intel - http://www.intel.com/

– Dell - http://www.dell.com/

– Fujitsu - http://www.fujitsu.com/

– Hewlett Packard Enterprise - https://www.hpe.com/

• Telecommunications hardware

– Cisco - http://www.cisco.com/

– Infoblox - https://www.infoblox.com/

– Midokura - http://www.midokura.com/

– Huawei - http://www.huawei.com/

• Telecommunications providers

– AT&T - http://www.att.com/

– Verizon Labs - www.verizonwireless.com/

• System Monitoring

– Sysdig - http://www.sysdig.org/

• Finance

– Goldman Sachs - http://www.goldmansachs.com/

• Virtualization platforms

– VMware - http://www.vmware.com/

• IOT Embedded Systems

– Resin.io - https://resin.io/

• Social Media Platforms

– Twitter - https://twitter.com/

24


	Introduction
	Virtual machines and containers
	Docker
	Docker, DevOps and MicroServices
	Reproducible science
	Compute resource services
	Reproducible deployment

	Deploying IVOATEX with Docker
	Docker in Firethorn
	Firethorn overview
	Virtual Machine allocation and Containerization
	Using pre-packaged or in–house base images
	Ambassador Pattern
	Python GUI and Python Testing
	Orchestrating build and deployment
	Portability and Reproducibility

	Issues found
	Memory issue

	Lessons learned
	Docker community
	Future of Docker in Astronomy and Science

	Conclusion
	Sources of information on Docker
	Open Container Initiative membership

