

PRIMAL: A particle-by-particle M2M Algorithm

Jason Hunt & Daisuke Kawata (MSSL, UCL)

Hunt & Kawata (2013), MNRAS, 430, 1928 Hunt, Kawata & Martel (2013), MNRAS, 432, 3062 Hunt & Kawata (2014), MNRAS, 433, 2112

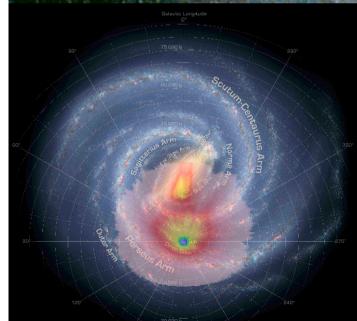
Jason Hunt & Daisuke Kawata

e.g. from McMillan (2011)

The Goals

- Milky Way Structure & Dynamics unknown;
 - R₀=8.35 ± 0.35 kpc
 - M_d=6.43 ± 0.63 x 10¹⁰ M_{\odot}
 - R_{d,thin}=2.6 ± 0.52 kpc
 - R_{d,thick}=3.6 ± 0.72 kpc
 - $V_{rot,\odot} = 239 \pm 5 \text{ kms}^{-1}$
- Hard to know global picture due to position and extinction.

Credit: http://mwmw.gsfc.nasa.gov/mmw_sci.html


Thus we need good surveys and good models!

Jason Hunt & Daisuke Kawata

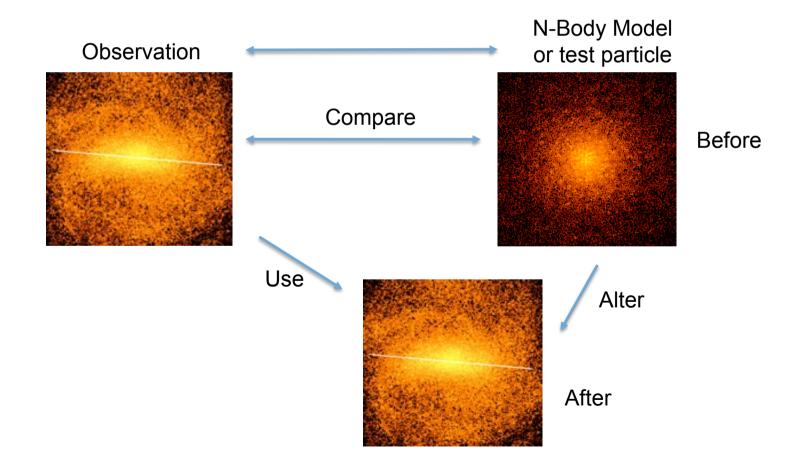
Gaia

Gaia (Launched 19th December 2013) ESA corner-stone mission Mapping a billion stars in the Milky Way

 Also ground based surveys, e.g. Gaia-ESO (VLT)

Credit: X. Luri & DPAC-CU2

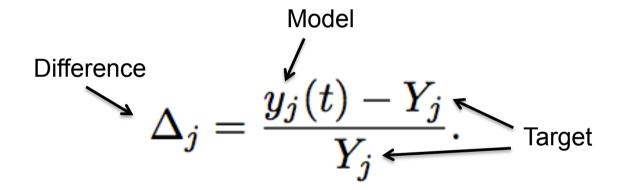
Jason Hunt & Daisuke Kawata


Modelling with Gaia data

We are developing a new Made-to-Measure dynamical model of the Milky Way.

The vast majority of observed stars will be from the Disc, so we focus on the disc.

Jason Hunt & Daisuke Kawata

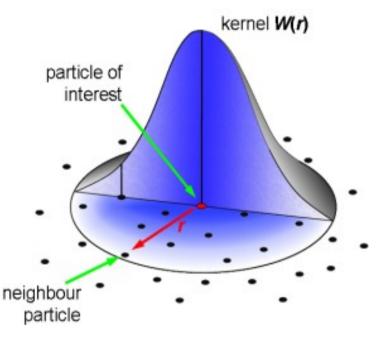

The Basic M2M Concept

Jason Hunt & Daisuke Kawata

The Basic M2M Formula

盦

For example, with density:


- If $\Delta \rho > 0$ then m_p decreases
- If $\Delta \rho < 0$ then m_p increases

e.g. Syer & Tremaine (1996), De Lorenzi et. al. (2007), Dehnen (2009), Long & Mao (2010)

Jason Hunt & Daisuke Kawata

Our adaptation: PRIMAL

- Compares target and model observables at target particle positions.
- Uses SPH Kernel to calculate contribution to observable.
- Use of self-gravity leads to structure and dynamics.

Jason Hunt & Daisuke Kawata

Our adaptation: PRIMAL

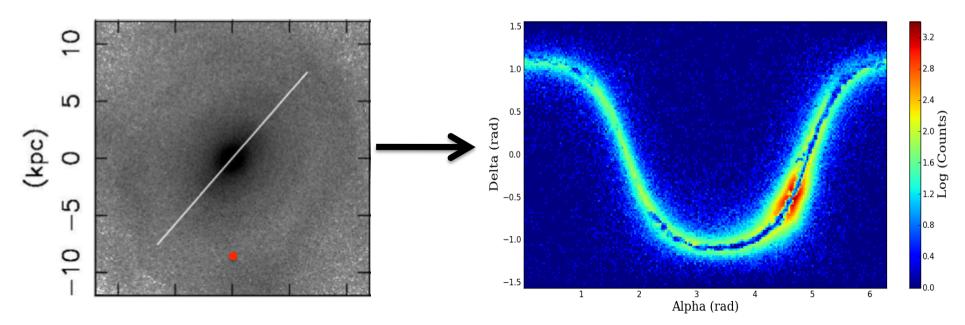
interest

neighbour

kernel W(r)

- $\mu_{\alpha,\delta}$ & v_r use likelihood equation with SPH Kernel. particle of
- Allows individual errors.

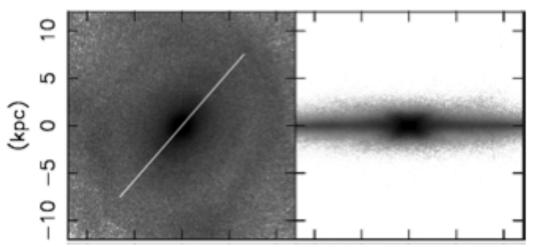
$$\hat{\mathcal{L}}_j = \frac{1}{\sqrt{2\pi}} \sum_i W_{ij} m_i \mathrm{e}^{-(v_j - v_i)^2/2\sigma_j^2}$$


 Resample model particles
 Particle when their mass is too large or too small.

Jason Hunt & Daisuke Kawata

Making target Gaia data

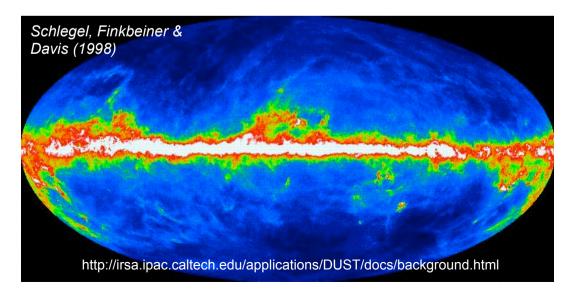
• Gaia astrometry data release expected 2016.


- Need mock Gaia catalogues to test.
- Can 'observe' an N-body model to get mock data.

Jason Hunt & Daisuke Kawata

The Target Galaxy

- N-body simulation with GCD+ (Kawata & Gibson (2003), 10⁶ particles, 2 Gyr old.
- R_d =3.0 kpc, z_0 =0.3 kpc, M_d =5.0x10¹⁰ M_{\odot} .
- Fixed dark matter halo, $M_h = 1.75 \times 10^{12} M_{\odot}$.

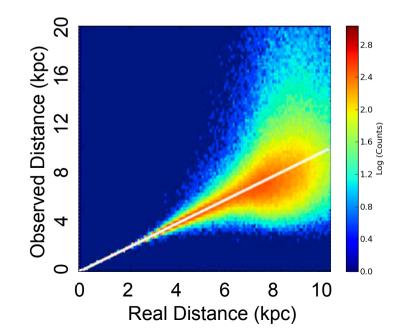


Jason Hunt & Daisuke Kawata

Adding Extinction

- Assume (for now) particles are MOIII tracers, with one star = one particle.
- Use 3D extinction maps from Galaxia (Sharma et. al 2011).
- Calculate extinction values for each tracer.

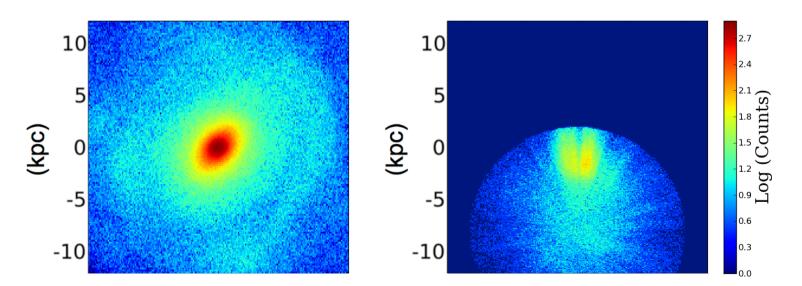
Jason Hunt & Daisuke Kawata



Adding Error

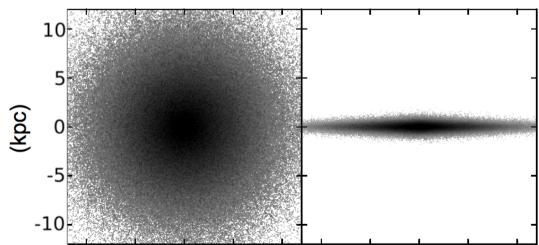
• Use Gaia performance estimates (pre launch).

(www.cosmos.esa.int/web/gaia/science-performance)


• Calculate errors for each tracer (M0III).

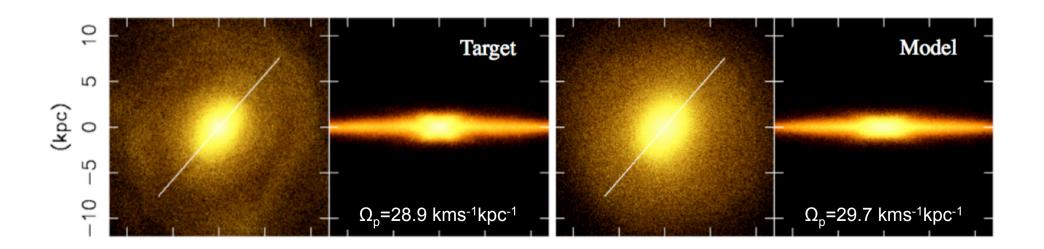
Jason Hunt & Daisuke Kawata

Selecting Observed Range

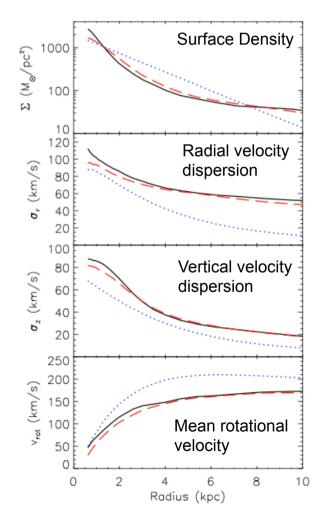

- Observed data limited to selected range of 10 kpc and 16.5 mag (for M0III).
- For MOIII, 173,821 of 1,000,000 selected.

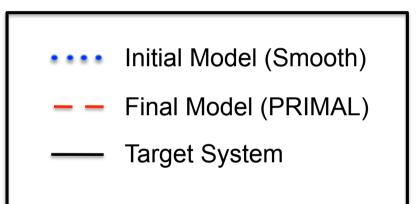
Jason Hunt & Daisuke Kawata

Initial Model Conditions


- Same properties as target except lower scale length (R_{d,m}=2.0 kpc, R_{d,t}=3.0 kpc).
- Smooth, 10⁶ particle, $m_p = 5.0 \times 10^4 M_{\odot}$
- Assumed known dark matter halo.

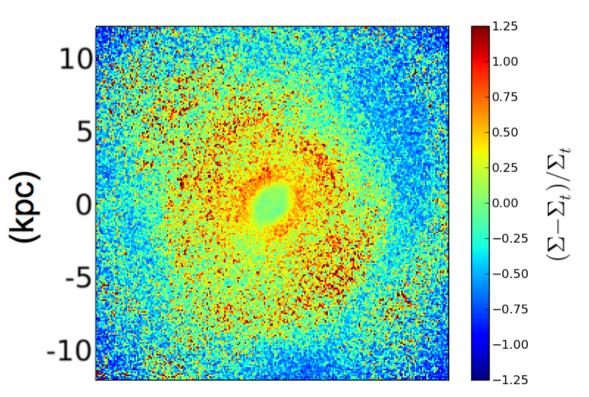
Jason Hunt & Daisuke Kawata


Applying PRIMAL to data


- Morphology recovered well, but missing arm and thinner box.
- Pattern speed recovered excellently.

Jason Hunt & Daisuke Kawata

Radial profiles reproduced



- Not directly constrained.
- Density and velocity radial profiles recovered well.

Jason Hunt & Daisuke Kawata

Surface Density

- Fractional difference in surface density
- Excellent bar recovery.
- Missing arm.
- Over-dense patches.

Jason Hunt & Daisuke Kawata

The next step

- Fit multiple populations with PRIMAL. (In Progress)
- Use SNAPDRAGONS mock data (our Gaia based population synthesis code)
- Construct multi-component models (e.g. thin & thick disc).

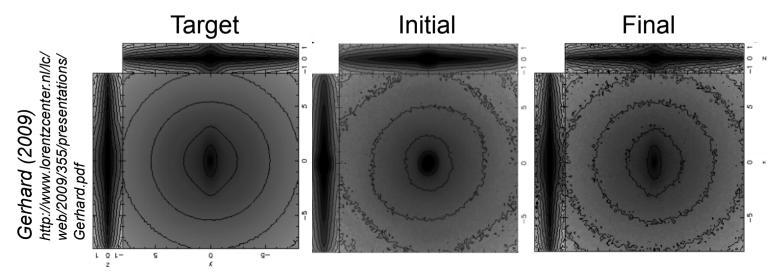
Jason Hunt & Daisuke Kawata

Summary

- New self-gravity M2M tailored to Gaia data.
- Testing using mock Gaia data from N-body model.
- Results promising despite extinction & error, especially pattern speed.

Jason Hunt & Daisuke Kawata

SNAPDRAGONS


- Resampling *N*-body particles into stars (Hunt et al. In prep)
- Adds extinction (from Galaxia maps) and Gaia error.
- No smoothing: clear particle
 <-> star relation.
- Can make mock Gaia stellar data.

Jason Hunt & Daisuke Kawata

Previous M2M example

- Bissantz et al. (2004), looks at the bulge.
- Mass model -> Dynamical model.
- No kinematic constraints.
- Matches kinematics in many bulge fields.

