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Astrostatistics for luminosity calibration in the
Gaia era

Abstract

The European Space Agency astrometric satellite Gaia was launched in
December 2013. Having completed its commissioning phase, Gaia is transmit-
ting data to Earth that will lead to the creation of an astrometric catalogue
of more than 109 celestial objects. This catalogue will contain astrometric
measurements, including parallaxes, with an expected precision in the 10-300
µas range. Due to the very large quantity of data which will be produced,
it is essential to begin preparing for the eventual use of the Gaia catalogue.
In this thesis we summarise the expected contents of the Gaia end-of-mission
catalogue using state of the art simulations from the Gaia Data Processing
and Analysis Consortium.

To prepare for the use of the Gaia catalogue, we define a set of statistical
methods for the correct use of trigonometric parallax data. Direct use of the
distance obtained from the inverse of the parallax is problematic, due to the
possible effect of numerous known statistical biases and selection effects. We
provide a set of methods which utilise parallax information correctly, in order
to calibrate the absolute luminosity of several objects of interest: normal stars,
variable stars, open clusters, and the Magellanic Clouds. The methods make
extensive use of statistical modelling and Bayesian statistics in order to treat
the data correctly and without bias. The methods have been tested using
simulated Gaia data, and are ready to be applied to the real Gaia data after
release.

In the case of Cepheid and RR-Lyrae variable stars, we present a method for
fitting the period-luminosity relation either with parallaxes, or without. For
the parallax free case, the method has been applied to real data in order to
calibrate the period-luminosity-metallicity relation for RR-Lyraes in the LMC.
In the case of open clusters, the method has been applied to Hipparcos data in
order to estimate the distance to the Pleiades and Hyades. We contribute to
the long-standing Pleiades distance debate through an analysis of the effect of
correlated errors in the original (1997) and new (2007) hipparcos reductions.
With the possibility of the correlated errors affecting the maximum precision
obtainable with Gaia data, we study the expected effect of error correlations
in Gaia.
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Astrostatistics for luminosity calibration in the
Gaia era

Resumen

El satélite astrométrico Gaia de la Agencia Espacial Europea fue lanzado
en Diciembre 2013. Ahora que ha completado su fase de comisionado, Gaia
está transmitiendo a la Tierra datos que permitirán la construcción de un
catálogo astrométrico de más que 109 objetos celestes. Este catálogo contendrá
medidas astronómicas, incluyendo paralaje, con una precisión esperada en
el nivel de µas. Dada la extrema cantidad de datos que serán creados, es
necesario comenzar a prepararse para el eventual uso del catálogo. En esta
tesis resumiremos el contenido esperado del catálogo de final de misión, usando
simulaciones de última generación del Consorcio de Análisis y Procesado de
los Datos de Gaia.

A fin de investigar las capacidades de Gaia en la calibración de luminosi-
dades, y los problemas potenciales en este campo que deben ser considerados,
es necesario estudiar varios detalles específicos de la misión. En primer lugar,
es importante determinar y cuantificar el retorno científico que Gaia propor-
cionará y el contenido esperado del catálogo. Trabajando con los datos del
simulador de Gaia para la obtención del catálogo final de la misión, ha sido
posible obtener un profundo conocimiento del contenido del mismo y la pre-
cisión que tendrá. Este análisis no sólo va servir como una referencia útil para
la comunidad científica involucrada en la preparación de la explotación de los
datos reales, sino también ha sido fundamental para decidir que aplicaciones
de la calibración de luminosidades deben abordarse en los siguientes pasos.

Con el objeto de preparase para el uso del catálogo final de Gaia, hemos
definido un conjunto de modelos para el uso correcto de las paralajes trigonométri-
cas. El uso directo de la distancia obtenido por inversión de la paralaje es
problemático, debido a los varios sesgos estadísticos y efectos de selección.
Proporcionamos un conjunto de métodos que usan correctamente la informa-
ción contenida en las paralajes, con la finalidad de calibrar la luminosidad
absoluta de varios objetos de interés: estrellas normales, estrellas variables,
cúmulos abiertos, y las nubes Magellanes. Los métodos hacen uso de estadís-
ticos Bayesiana y de modelos estadísticos para tratar los datos correctamente
y sin sesgos. Estos métodos han sido probados con datos simulados y reales
de varias fuentes, y están disponibles para aplicarlos a datos reales de Gaia
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cuando sean publicados.
Para estrellas variables, presentamos un método para inferir el relación entre

periodo y luminosidad, con o sin paralajes. El método que no usa paralajes
ha sido aplicado a un conjunto de datos de OGLE-III y VMC para calibrar la
relación entre periodo, luminosidad y metalicidad (PLM) para estrellas tipo
RR-Lyrae en la Nube Grande de Magellanes. Este método Bayesiano utiliza
Markov Chain Monte Carlo para estimar la inclinación y punto de cero de la
relación PLM y cuantificar la posterior función de densidad de probabilidad.

Para cúmulos abiertos, presentamos un método y su aplicación a datos
de Hipparcos para estimar la distancia de las Pleiades y las Hyades. El
método combina información de paralaje, magnitud aparente, movimiento pro-
pio, color, y velocidad radial para determinar simultáneamente: distancia, ve-
locidad espacial 3D, y una isócrona observada. A través de su aplicación para
determinar la distancia hasta las Pleiades, hemos detectado evidencia directa
de segregación de masa. Las estimaciones para la distancia de las Pleiades y
las Hyades concuerdan con estudios anteriores, además son altamente precisas
dado que hemos incluido más información. Hemos simulado observaciones de
una cúmulo como las Pleiades para probar el uso del método con datos de
Gaia. Encontramos que el método sera precisa hasta unos kpc. La figura 1
muestra la comparación de resultados del metodo Máxima Verosimilitud con
el método básico de inversión de paralaje.

Hemos contribuido al debate acerca del problema de la distancia a las
Pleiades, a través de un análisis de los efectos de la correlación en los errores en
el catálogo original de Hipparcos (1997) y el nuevo (2007), revisando los resul-
tados de autores anteriores, los cuales han argumentado diversos problemas en
el catálogo de Hipparcos. Dada la posibilidad de que dichas correlaciones en
los errores puedan afectar la precisión máxima obtenible con Gaia, hemos es-
tudiado el efecto potencial en el catálogo de Gaia. Los errores correlacionados
son errores que tienen un componente en común en una cantidad de estrellas,
normalmente con baja separación en el cielo, por razones diversas, como una
pequeña inexactitud en la determinación de la actitud del satélite. Tales efec-
tos pueden limitar la precisión del cálculo de valores medios para el conjunto
de las estrellas afectadas. Hemos construido una aproximación de la solución
global astrométrica de Gaia de un área pequeña para dos casos: con errores
con un componente correlacionado, o con errores totalmente independientes.
Comparando los dos casos hemos comprobado que hay un límite en la precisión
máxima obtenible de alrededor de 1µas.
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Figure 1: Resultados del estimación de la desestanca a una conjunto de simulados cúmu-
los como las Pleiades, con distancias desde 10 a 30 veces la distancia original. Los círculos
llenas muestran la porcentaje diferencia dentro la distancia estimado por Máxima Verosimil-
itud y la distancia verdadera. Los círculos vacías muestran la porcentaje diferencia dentro
el inverso del mediana paralaje y la distancia verdadero. La área verde pone de manifiesto
los errores de 1, 2, and 3σ extrapolado por el rango completa.
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1
Introduction

The understanding of the distance scale of the universe is one of the most fun-
damental aspects of astronomy. Knowledge of the distance to an object and its
absolute luminosity is inextricably linked, and calibration of these properties
has implications in studies at all scales of the universe. From resolving the
position of neighbouring open clusters to calibrate stellar evolution models,
to estimating the distances of ultra-high redshift galaxies in order to deter-
mine the corresponding age of the universe, precise distance and luminosity
calibration is crucial. Yet, the task is far from easy.

Measuring the distance to a star in the sky by observing its apparent bright-
ness is of course impossible, as the observer has no way of knowing if the bright
star they are observing in the night sky is actually a very bright distant star,
or a star of modest brightness which happens to be located relatively close to
Earth. This severe lack of any measurable distances in space throughout the

1



majority of human history has lead to many strange and interesting concepts
of the structure of the universe.

In early times (pre-1500AD), the study of the cosmos was undertaken solely
by theologists and philosophers. Many early civilisations believed that the
Sun, Moon, planets, and the stars were equidistant, existing in a single plane,
or existed in a set of spherical shells around the earth. It wasn’t until the start
of the 16th century that measurements of the positions of the planets were
combined with robust mathematics by Copernicus and later Kepler in order
to correctly order the planets in their orbit around the sun, and in doing so
calculate the relative sizes of their orbits. Still, the limiting optical technology
of the time prevented any possible determination of the distances of stars,
which were still widely seen as existing in a single thin sheet around the earth.

The first and only direct way to measure the distance to stars is through
the use of trigonometric parallax, the measurement of the apparent movement
of stars from the perspective effect caused by the translation of the observer
(on earth) around the sun. Attempts were made to measure stellar parallax
by Galileo as early as the 17th Century, but again, limitations in the precision
of position measurements at that time made any detection of parallax motion
impossible. The lack of measured parallaxes was even used in that era as an
argument against heliocentricity (Graney, 2006). The first successful measure-
ment of a stellar parallax was made more than 200 years later, by the German
astronomer and mathematician Friedrich Bessel.

Due to the tiny angles involved, measurement of parallaxes remained difficult
and time consuming until very recently. While some catalogues of trigonomet-
ric parallax have been produced (e.g.: Jenkins (1963), van Altena et al. (1995)),
the first large and homogeneous all sky sample of parallaxes was produced by
the European Space Agency (ESA) mission, Hipparcos, in 1989 (Perryman &
ESA, 1997). By moving to space based observation, Hipparcos benefited from
a very stable environment, and due to having two telescopes separated by a
large angle could measure absolute parallaxes, which are not possible from the
ground. The release of the 118 thousand star catalogue in 1997 (Perryman &
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ESA, 1997), which included a measurement of the absolute trigonometric par-
allax for every star, represented a huge breakthrough in attempts to measure
stellar distances, and it is still in widespread use to this day.

However, the angles involved in measuring distances using parallax are in-
credibly small. Proxima Centauri, the nearest star to the sun, has a distance
of only 1.3 parsecs, leading to a parallax of 2×10−4 degrees (769 mas). This
means that even for ground breaking space missions such as Hipparcos with
astrometric precision of a few miliarcseconds or below, useful distance mea-
surement is confined to stars in the very local neighbourhood. With parallaxes
quickly becoming unmeasurable for more distant objects, astronomers have de-
veloped a series of innovative and complimentary distance measures which can
be used to step out to greater and greater distances. The first step on the so
called distance ladder is parallax measurements by Hipparcos and other mis-
sions such as the Hubble Space Telescope (HST) (Benedict et al., 1995). These
form the base calibration of distances with direct distance measurements to
objects from the closest stars out to a few hundred parsec. These distances are
then used to calibrate a second tier of distance indicators, including nearby
standard candles.

Several types of variable stars are known to exhibit a strong correlation be-
tween their absolute magnitude and directly observable properties such as the
period of pulsation. The most famous of these are classical Cepheid variable
stars, which have been known to follow a tight relation between period and
luminosity since the discovery of the relation by Leavitt (1908). Other variable
star types such as RR-lyrae and Mira variables have also been found to fol-
low similar relations in luminosity, period, and metallicity (see e.g. Longmore
et al. (1986), Liu & Janes (1990), Nemec et al. (1994), Freedman & Madore
(1990), and work continues to quantify and calibrate these relationships.

Variable stars, and particularly Cepheids as they are massive and bright,
have been used to estimate distances across the Milky Way, and have been
useful historically in characterising the size and shape of our Galaxy and our
position within it (e.g. Shapley, 1939). Such variables are also easily observ-
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able in the Magellanic Clouds, where direct parallax measurements have been
impossible until now, and many attempts have been made to quantify the
distance to both the Large and Small Magellanic clouds using variable stars
for which absolute luminosity relations have been calibrated within the galaxy
(Caldwell & Coulson, 1986; Udalski et al., 1999a; Haschke et al., 2012).

Another type of standard candle is that of some types of supernovae, par-
ticularly type Ia, which, due to their formation mechanism are believed to
exhibit a consistent peak luminosity and light curve (Baade, 1938; Riess et al.,
1996). Due to their extreme brightness, they are observable in galaxies up
to megaparsec distances and are therefore useful at calibrating the distances
to their host galaxies in the extragalactic distance scale. The combination of
distance and redshift information for distant galaxies allows the study of the
structure and evolution of the universe (Riess et al., 2004).

Use of the Hertzsprung-Russell (HR) diagram can also be useful in deter-
mining the distances to stars. The concept of main sequence fitting (e.g.
Pinsonneault et al. (2003) and following series) can be applied to clusters of
stars, and involves comparing the position of the main sequence on the HR
diagram with that of a cluster of known distance. As all stars in each cluster
are known to be at a similar distance, the shape of the main sequence will
be common to both clusters, yet the offset in magnitude will be due to the
difference in the distance of the two clusters (with the added complicating
factor of interstellar extinction). This method can be used for galactic open
and globular clusters clusters.

Alternatively, the observation of red giant branch (RGB) stars is possible
out to nearby external galaxies due to their extreme luminosity, and can in-
dicate distance through positioning of the Tip of the RGB (TRGB, Lee et al.
(1993), Madore et al. (1997)). The core burning and helium flash which occurs
after the transition to the RGB leads to a fairly specific maximum absolute
luminosity, independent of the mass of the star. This means that the bright-
est Population II giant stars in a galaxy can be treated as a sort of standard
candle. This method has been used to calibrate the distance to the Magellanic
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Clouds (e.g. Sakai et al., 2000), and other galaxies up to several Mpc with the
use of the HST (e.g. Sakai & Madore (1999), Sakai et al. (1997)).

The recurring theme with all of the above methods is the need for precise
luminosity calibration. For variables, the zero point of their absolute luminos-
ity relations must be calibrated. For MS fitting, the absolute luminosity of the
zero age main sequence must be determined, and for the TRGB, its position on
the HR diagram must be determined. Where methods overlap, each distance
estimator (or a combination of several) is used to calibrate the one suitable
for determination of yet greater distances. Uncertainty and systematic errors
are carried through, leading to progressively worse precision as distances in-
crease. The penalty for imprecision at the smallest scales, which are then
used to calibrate other measures, can be significant. Recent controversy about
the distance to the LMC, the very nearest significant neighbour of the Milky
Way, has been highlighted by the famous plot from Gibson (2000) and later
expanded by Benedict et al. (2002), who show the difference of more than 17
kpc, or 45%, in the distance determination of the LMC obtained by using dif-
ferent methods. While this example is extreme, and has been improved upon
in recent years, it highlights the requirement for precise luminosity calibration
at galactic scales. The European Space Agency (ESA) is taking the lead in
this, with the flagship space mission Gaia.

1.2 Gaia mission / instruments

Gaia is a cornerstone ESA mission, and was launched on the 9th of December
2013. Gaia is a successor to the Hipparcos astrometric space mission, and is
based on the similar observation principles of simultaneous observation using
two telescopes separated by a large angle. Gaia combines high precision optics
and stable environment at Lagrangian point L2 with the largest CCD camera
ever put into space in order to produce a highly precise astrometric catalogue of
more than 109 stars, extragalactic objects, and solar system objects. Through
Gaia’s photometric instruments, object detection up to G = 20 mag will be
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possible (see Jordi et al. (2010) for a definition of G magnitude), including
measurements of positions, proper motions, and parallaxes up to micro arc-
second accuracy. The on-board radial velocity spectrometer will provide radial
velocity measurements for stars down to a limit of around GRV S = 16 mag.
With low-resolution spectra providing information on effective temperature,
line of sight extinction, surface gravity, and chemical composition, Gaia will
yield a detailed catalogue that contains roughly 1% of the entire galactic stellar
population.

Gaia will represent a huge advance on its predecessor, Hipparcos (Perryman
& ESA, 1997), both in terms of massive increases in precision and in the num-
bers of objects observed. Thanks to accurate observations of large numbers
of stars of all kinds, including rare objects, large numbers of Cepheids and
other variable stars, and direct parallax measurements for stars in all galactic
populations (thin disk, thick disk, halo, and bulge), Gaia data is expected
to have a strong impact on luminosity calibration and improvement of the
distance scale. This, along with applications to studies of galactic dynamics
and evolution, and of fields ranging from exoplanets to general relativity and
cosmology, Gaia’s impact is expected to be significant and far reaching.

The Gaia space astrometry mission will map the entire sky in the visible
G band over the course of its five-year mission. Located at Lagrangian point
L2, Gaia will be constantly and smoothly spinning. It has two telescopes
separated by a basic angle of 106.5◦. Light from stars that are observed in
either telescope is collected and reflected to transit across the Gaia focal plane.

The Gaia focal plane can be split into several main components. The ma-
jority of the area is taken up by CCDs for the broad band G magnitude
measurements in white light, used in taking the astrometry measurements.
Second, there is a pair of low-resolution spectral photometers, one red and one
blue, producing low-resolution spectra with integrated magnitude GRP and
GBP , respectively. Finally, there is a radial velocity spectrometer observing
at near-infrared, with integrated magnitude GRV S. The magnitudes G, GRP ,
and GBP will be measured for all Gaia sources (G ≤ 20), whereas GRV S will
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be measured for objects up to GRV S ≤ 16 magnitude. For an exact definition
of the Gaia focal plane and the four Gaia bands, see Figs. 1 and 3 of Jordi
et al. (2010).

The motion of Gaia is complex, with rotations on its own spin axis occurring
every six hours. This spin axis is itself precessing, and is held at a constant
45◦ degrees from the Sun. With the Earth, Gaia will orbit the Sun over the
course of a year. Thanks to the combination of these rotations, the entire sky
will be observed repeatedly. The Gaia scanning law gives the number of times
a region will be re-observed by Gaia over its five-year mission, and comes from
this spinning motion of the satellite and its orbit around the Sun. Objects in
regions with more observations have greater precision, while regions with fewer
repeat observations have lower precision. The average number of observations
per object is 70, although it can be as low as a few tens or as high as 200.

1.3 Rationale

With the successful launch of Gaia in December 2013 and subsequent com-
pletion of the commissioning phase, Gaia is in nominal mission mode and is
transferring data to ground. There are several planned data releases, with the
first expected in summer 2016, with the preliminary release of parallax data
expected in early 2017. It is therefore essential to prepare for the use of what
will be at the time of its release one of the largest and most complex astro-
nomical datasets ever created. As indicated above, there is a strong need for
precise parallax data which can be used to calibrate stellar luminosities and
different aspects of the distance ladder. This thesis focuses on methods for
luminosity calibration, and takes a statistical approach to facilitate efficient
use of the catalogue. However, as has been known since long before Hippar-
cos, the correct use of trigonometric parallax data is non trivial. In this thesis
several tools are developed for luminosity calibration with Gaia data. Chapter
2 contains a summary of the numerous biases and other problems which arise
when using parallax data for luminosity calibration, providing a justification
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for the mathematical and statistical methods applied during this thesis.
Of course, the Gaia data is not available at the time of writing. This is not

problematic, because the methodology can be tested with simulated data, and
the resulting algorithms can be applied to currently existing data before Gaia
release. In this way, the tools required for luminosity calibration with Gaia
will be prepared for use with the Gaia data as soon as it is available. In order
to summarise the expected contents of the Gaia catalogue, and to have a set
of Gaia-like data in order to test the methods produced during this thesis, it
has been necessary to perform a statistical overview of a simulated Gaia mock
catalogue. The results of which can be found in Chapter 3.

The core product of this thesis is a set of working methods for luminosity
calibration with Gaia data. These tools have been applied to fundamental
aspects of luminosity calibration. The tools are given in Chapters 4 to 7 in
the form of statistical methods, with full derivations of the mathematics used.
They also have been implemented in functioning code, tested with simulated
data, and in some cases applied to real data, such as Hipparcos. This has
produced several results which are given in the text, and have featured in
several academic publications. Additionally the codes and expertise have been
developed, and are available, ready for exploitation of the Gaia catalogue when
it is made available.

1.4 Main contributions of this thesis

The main contributions of this thesis are listed here.

• An overview of the problems which can arise during the use of parallax
data, including statistical biases and selection effects.

• An overview and statistical analysis of the expected Gaia catalogue using
the Gaia Object Generator simulated catalogue. We present a selection
of the statistics to provide an overview of this one billion star catalogue.
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• A Maximum Likelihood (ML) tool for luminosity calibration of stars of a
specific luminosity class and spectral type, ready for use with Gaia data.

• A ML tool for calibration of the period-absolute luminosity relation of
Cepheids, ready for use with Gaia data.

• A fitting package for linear regression with 2 or 3 dimensional data,
used for the calibration of the RR-Lyrae period-luminosity-metallicity
relation.

• A tool for simultaneous fitting of an open cluster’s mean distance, posi-
tion, 3D kinematics, and an observational isochrone, ready for use with
Gaia data. Tested using Hipparcos data.

• A tool for fitting the mean distance to the LMC, ready for use with Gaia
data.

• A study into the effects of error correlations in the Gaia catalogue.
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2
Background

2.1 Biases and sample selection effects

It has long been known that the correct use of parallax information is non-
trivial. When dealing with observational data, there are many complicating
effects such as observational errors and sample incompleteness which can effect
results. Use of the Hipparcos astrometric catalogue brought a renewed focus to
the debate, and attempts were made to stress the importance of the choice of
methods for the use of such data and the understanding of any results. Papers
such as Arenou & Luri (1999) and Arenou & Luri (2002) have publicised several
of the major effects, and provide several examples in the literature of misuse
of such data.

This section contains an overview of the problems which can arise during
the use of astronomical data, including statistical biases and selection effects,
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with particular focus given to the use of parallax data. A brief description
of the main effects are given along with some examples from the literature in
order to highlight potential difficulties in the use of the Gaia catalogue and to
justify the choice of methods given in Chapter 4.

2.1.1 Malmquist

In 1922 the Sweedish astronomer G. Malmquist highlighted the effects of selec-
tion bias in observational astronomy, caused by preferentially selecting brighter
objects when constructing a magnitude limited sample.

Given a population of stars, each apparent magnitude is dependent on the
star’s distance and its absolute magnitude (excluding other effects such as
reddening). By making a cut in apparent magnitude at some faintness limit,
brighter stars are included from a greater volume of space, because stars which
are intrinsically brighter can be seen at greater distances. As such, the un-
derlying population of stars is sampled non-uniformly, resulting in a mean
absolute magnitude greater than that of the underlying population.

This effect is present in any magnitude limited sample, and is therefore
widespread in astronomy as almost all telescopes are limited primarily by the
flux of light arriving at the telescope.

Fig 2.1 shows a simple model of the bias in action. The population of stars
is simulated using a Gaussian distribution for the absolute magnitudes and
generates distances assuming that stars are uniformly distributed in space.
The apparent magnitude of each star is calculated, ignoring any complicating
effects such as reddening, mixed population or non-uniform spatial distribu-
tions. By assuming some limiting magnitude and selecting a sample from only
the stars which are brighter than this limit, a cut is performed in the appar-
ent magnitude distribution. The distribution of the absolute magnitudes of
this sample is not the same as the original population, having a non-Gaussian
shape and a brighter mean absolute magnitude.

Properties such as the mean absolute magnitude, which have been derived
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Figure 2.1: A Monte Carlo simulation of a population of stars with uniform spatial distri-
bution and a Normal distribution of absolute magnitudes. Top: the simulated population;
Bottom: the population after the application of a cut in apparent magnitude.

13



from the observed population, will be strongly biased with respect to the true
underlying population. In more realistic cases including mixed populations or
realistic spatial distribution (e.g. galactic disk), the problem becomes more
complex and difficult to correct for.

2.1.2 Lutz-Kelker

The Lutz-Kelker (Lutz & Kelker, 1973) bias is another statistical effect known
to bias mean parallaxes in observational data. The theoretical basis of the
Lutz-Kelker bias is that the spatial distribution of stars results in a non-
uniform distribution of parallaxes. When this non-uniform distribution is
affected by observational errors, the mean of the distribution can be shifted
significantly.

In the simple case of a uniform spatial distribution of stars, we can divide
the space into thin heliocentric spherical shells with equal thickness and radii
r to r + δr. As the radius increases, there are more stars per shell due to
the fact that more distant shells contain a greater volume of space. In error
affected observation, stars observed in one shell could have been scattered
from shells either closer or further away. However, if there are more stars at
greater distances, there is a greater probability that stars observed to be in
some specific shell come from greater distances.

This causes measured distances to be on average too small. The situation
is further complicated when attempting to account for the true spatial distri-
bution, which is affected by the shape of the Galaxy and our position within
it. Lutz and Kelker calculated analytically a bias of -0.43 mag for a relative
parallax error σ$/$ = 0.175. Koen (1992) provide tables of the extent of the
bias, along with confidence intervals, showing a large dependence on the choice
of spatial distribution and the effect of uncertainty in the distribution of the
formal errors.

The bias has been found at similar levels empirically by Oudmaijer et al.
(1998), though use of the Hipparcos catalogue. They propose a correction
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which can be applied to individual stars or a sample, based on assumptions
about the luminosity function, spatial distribution and error in parallax. How-
ever, a correction is not necessary if the spatial distribution of the population
is included explicitly the calculation of the mean parallax (see Sect. 2.2).
This avoids the Lutz-Kelker bias completely, negating the need for any poste-
rior corrections with the numerous assumptions and large confidence intervals
associated with such.

2.1.3 Non-linear transformations

Non-linear transformations are present throughout astronomy. In the case of
parallaxes, the very simple relation, D = 1/$ relates an object’s parallax with
its distance, when the distance is in parsec and the parallax is in arcseconds.
However, if the error distribution in the measured parallax can be described by
a symmetrical Gaussian distribution, then the error of its inverse (the distance)
can no longer be described with a symmetrical error distribution due to the
fact that taking an inverse is a non-linear transformation.

1

$ ± σ 6= D ± σ′

A similar problem exists in famous equation relating absolute and apparent
magnitude:

M = m+ 5log($) + 5

where, although the parallax is used directly, the logarithm acting on the
parallax results in an asymmetric uncertainty and a bias if this is not correctly
taken into account.

The problem is further complicated by the possibility of negative parallaxes,
which, although geometrically impossible, can occur in real data for distant
objects where large observational errors can result in a negative value. As the
inverse of a negative parallax results in a negative distance, and the logarithm
of a negative number is mathematically non-defined, it could be tempting to
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discard such results.
Such measurements do however contain information, and can be used to

improve statistics of a sample. By discarding negative values, a bias is in-
troduced due to the more distant, and therefore smaller parallax, stars being
more likely to be have negative parallaxes, and that fainter stars are usually
more likely to have larger errors.

The above mentioned effects are particularly relevant in the construction
of colour-absolute magnitude diagrams, which often require the calculation of
each object’s absolute magnitude from apparent magnitude and distance or
parallax information.

2.2 Methods

In this thesis, several different statistical methods are used. These methods
are utilised for applications such as linear and non-linear regression, parameter
fitting, and Bayesian inference, and have different strengths and weaknesses
making them attractive for some situations above others. Here, an introduc-
tion and brief description of the main methods are given, to familiarise the
reader before giving the detailed application of such methods in Sect. 4.

In science in general it is often useful to model a system or a set of results.
This allows one to quantify a process or outcome, make predictions about
future outcomes, or to summarise results in a concise manner. Modelling of
a system or set of results generally requires a simplification or an assumption
about its nature. The development of a model can be as simple as modelling
a set of x, y data as following a straight line. In this case, one would assume
that a model for the data is

y = Ax+B (2.1)

where the parameters A and B are the model parameters which are to be
found. In the other extreme, models can involve multiple highly complex
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distributions and many tens of unknown parameters.
In either case, if the model does not accurately describe the system being

modelled, the results can be biased, or in the worst case meaningless. Fitting a
straight line to data which follows a quadratic power law will provide a result,
albeit one which may not be particularly useful. For this reason models which
are chosen must always be justifiable, and checked by eye or by using one or
several statistical tests. In general, models which better describe the data,
or have more parameters, will reduce the variance between the data and the
model.

With one or several models defined, it is necessary to obtain the free fit
parameters. There are several methods to do so, and those which are utilised
extensively in this thesis are outlined below.

2.2.1 Least Squares / Frequentist statistics

Probably the most basic and widely used method for linear regression and
model fitting is Minimum Least Squares (LS). LS has been in use since around
1800, and involves minimising the sum of the square of the residuals between a
set of observations and a set of corresponding model predictions. In the simple
case of a set of independent x and dependent y data, a model of the data takes
the form ymodel = f(x,θ), where θ is a vector of the parameters of the model.
The least squares solution is therefore found by minimising

S =
N∑
i=0

r2
i (2.2)

where r is the residual yobs − y model.
In 1810 it was shown by Laplace that, in the case of unbiased, uncorrelated

errors of equal size, the best possible estimation of model parameters is that
given by the LS approach. Due to this, and the ease of learning and applying
the LS technique, LS is one of the most commonly used fitting techniques
currently in use. It is also very fast to compute, and is therefore easily appli-
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cable on large datasets. However, in cases where the assumption of perfectly
known, unbiased, uncorrelated and equal errors are not fulfilled, more complex
methods such as that given in Sect. 5.2 should be preferred.

Some variations of LS exist, such as weighting the residuals of each obser-
vation by the observational error.

2.2.2 Bayesian statistics

Work containing the basis for what is now known as Bayes theorem (Bayes,
1763) was published by the Royal Society London, in 1763, two years after the
death of its writer, Thomas Bayes. The work defines probability (page 376,
definition 5), as:

The probability of any event is the ratio between the value at
which an expectation depending on the happening of the event
ought to be computed, and the value of the thing expected upon
its happening

Bayesian methodology uses this definition of probability which, importantly,
allows the inclusion of prior information in assigning a probability. The core
concept of Bayes theorem can be concisely expressed as:

P (A|B) =
P (B|A)P (A)

P (B)
(2.3)

where A is an event and B is the background. Here, P (A|B) is the condi-
tional probability of A occurring, given that B is true. P (A) is the prior on A,
which contains any initial belief about its outcome. The above is a very pow-
erful statement, as it combines knowledge about a test (B) with observational
data and any prior belief in its result. This inclusion of prior belief can lead
to stronger constraints on our posterior probability P (A|B), provided that the
prior belief is not wrong, and therefore biasing the result.

In astronomy, there is often a strong degree of previous knowledge about an
object or event, which in many cases is ignored when new observational data
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is acquired. This previous knowledge can be put to good use, in defining a
model which accurately describes the data, and in providing a constraint on
the outcome of the fitting though the application of priors.

Maximum Likelihood Estimation

Maximum Likelihood Estimation (MLE) is a method for estimating the pa-
rameters of a statistical model, given a set of observations. The ML estimate
of a set of model parameters are those that maximise the Likelihood of the ob-
servations. For a set of n observations, (x = x1, x2, ..., xn), and set of model
parameters, θ, the Likelihood is defined as the probability

L(θ;x) = P (x|θ) (2.4)

Maximising L, or equivalently minimising −L, gives the parameters which
provide the maximum probability of having taken the observations in x. Com-
paring the above with Bayes theorem in Eqn. 2.3 we see the term P (θ)/P (x)

missing. Of course, P (x) is independent of the parameters θ and so in the
maximisation can be ignored. Secondly, MLE assumes no prior on any of the
parameters, leaving P (θ) as a uniform probability.

In many cases of parameter estimation the priors on the parameters should
be uninformative, i.e. very wide or flat, in order to take the weight of the
results from the data being used, and to avoid biasing the result by using
an incorrect prior. In these cases, MLE provides an excellent method for
parameter estimation, as has been shown through its numerous applications
to diverse problems throughout the literature.

As the maximisation of equation 2.4 is simply a multi-dimensional opti-
misation problem, common packages are widely available for numerical opti-
misation without differentiation. Nelder & Mead (1965), Wright (1996) and
Powell (1964) have been used extensively in the minimisation problems in the
following chapters, and can be quick to compute. Problems can arise due to
local minima in highly complex minimisation problems, which more advanced
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methods such as that given in Sect. 2.2.2 can solve.
MLE has a long history in astronomy, but specific improvements by Luri

et al. (1996) resolved several shortcomings in its use specifically in the field
of luminosity calibration. The improvements, described in full in Luri et al.
(1996), have been used extensively in this work and allow the following im-
provements:

• The use of numerical methods avoids the necessity of approximating or
simplifying complex equations during the formulation of the MLE, thus
avoiding any loss of precision.

• Explicitly taking into account sample selection effects caused by obser-
vational constraints is required to correctly model the joint probability
density function (PDF) of the sample. These selection effects introduce
various biases into the sample, e.g. Malmquist, and their correct treat-
ment within the formulation of the density laws avoids the need for a
posteriori corrections, which are often poorly understood.

• Through the construction of the MLE joint PDF, where all of a star’s
available information is used simultaneously, posterior estimates of a
star’s properties can be obtained with increased precision compared with
the original data.

Maximum A Posteriori estimation

In cases where prior information about the model parameters is available,
Maximum A Posteriori (MAP) estimation can be applied. Starting again from
Bayes theorem in Eqn. 2.3, the Likelihood is defined as

L(θ;x) = P (x|θ)P (θ) (2.5)

The prior on the parameters, P (θ), is the PDF of the parameters which, if
known, provides an additional constraint on their estimation. Having priors on
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the parameters, even if they are wide, has the additional benefit of limiting the
search space when attempting to maximise the Likelihood L. If a parameter is
known to be, for example, positive, then priors defining a zero probability for
negative values limits the search space, preventing wasted computation time.
Of course, in the case of uniform priors, the MAP estimate of a set of model
parameters is equivalent to that from MLE.

As with MLE, only the parameters maximising the Likelihood are found.
This makes the maximisation straightforward, and the same methods as those
in 2.4 can be applied for optimisation. As only the global maximum is required,
the optimisation can be performed in relatively few steps, depending on the
number of dimensions. However, finding only the peak of the posterior PDF
of the parameters does not provide any information about the spread of the
distribution (uncertainty), or any other characteristics such as asymmetry or
irregularity.

Full Bayesian Inference

Evaluating the full posterior PDF of the parameters provides more informa-
tion. The peak of the PDF is the MAP estimate (of MLE if no priors are
used). The width of the PDF gives confidence intervals, through taking upper
and lower quartiles, or by more specific methods such as batch means (Flegal
& Jones, 2008). Other important properties such as asymmetric or bi-modal
distributions are also easy to detect and include in any analysis.

However, evaluating the full posterior PDF can be prohibitively expen-
sive in terms of computation time, especially in cases with a large number
of dimensions. The problem of efficiently sampling a large space has been
made much simpler through the combination of Markov Chain Monte Carlo
(MCMC) methods with modern day computing power.

The introduction of MCMC methods in the 1940’s (Robert & Casella, 2008)
by the same scientists who developed regular Monte Carlo, was not very widely
followed up due to the lack of computing resources at the time. Work by
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Metropolis et al. (1953) and later Hastings (1970) on algorithms which over-
came several of the original shortcomings of the method allowed much greater
utility of MCMC methods, which have become widespread since the 1990’s.

MCMC effectively builds a chain of successive iterations of a random walk
through the parameter space. When evaluating a Likelihood function L, the
direction of the random walk performed by MCMC is weighted in the direction
of increasing Likelihood, meaning that the sampler spends more time sampling
regions of greater importance (i.e. regions of non-negligible probability in
the posterior PDF of the parameters) and little to no time in regions of less
importance. The key difference from regular optimisers is the fact that the
sampler contains a random element which allows the chain to move away from
the peak of the distribution, sampling the entire useful range (but no more).
The method is much more efficient than brute force when sampling irregular
distributions and in problems with a large number of dimensions.

Many modern implementations of MCMC methods exist, making its appli-
cation straightforward. Here, the EMCEE algorithm (Foreman-Mackey et al.,
2013) is used. EMCEE offers an efficient parallelised solution whereby a large
number of initial guesses are used to create a number of parallel chains, which
can interact to concentrate the chains towards regions of higher importance.
This reduces the importance of good initial guesses and goes some way towards
avoiding the problem of an optimiser getting stuck in local minima.
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3
The Gaia catalogue

This section contains a complete overview of the expected contents of the
Gaia catalogue. This has been achieved through analysis of the mock Gaia
catalogue which has been simulated in order to enable perspective users of
the Gaia data to get an idea of the contents and quality of the expected end-
of-mission catalogue. This mock catalogue has additionally served as a tool
for familiarisation with the format of the Gaia data and the use of massive
datasets. The simulated data has been used extensively in Chapters 4 to 7 to
test the various statistical methods with Gaia-like data. The contents of this
chapter has been published as Astronomy & Astrophysics, Volume 566,
2014, id: A119, 15 pp.
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3.1 Simulations

During its five years of data collection, Gaia is expected to transmit some 150
terabytes of raw data to Earth, leading to production of a catalogue of 109

individual objects. After on-ground processing, the full database is expected to
be in the range of one to two petabytes of data. Preparation for acquiring this
huge amount of data is essential. Work has begun to model the expected
output of Gaia in order to predict the content of the Gaia Catalogue, to
facilitate the production of tools required to effectively validate the real data
before publication, and to analyse the real data set at the end of the mission.

To this end, the Gaia Data Processing and Analysis Consortium (DPAC) has
been preparing a set of simulators, including a simulator called the Gaia Object
Generator (GOG), which simulates the end-of-mission catalogue, including
observational errors. Here a full description of GOG is provided, including
the models assumed for the performance of the Gaia satellite and an overview
of its simulated end-of-mission catalogue. A selection of statistics from this
catalogue is provided to give an idea of the performance and output of Gaia.

Simulation of many aspects of the Gaia mission has been carried out in
order to test and improve instrument design, data reduction algorithms, and
tools for using the final Gaia Catalogue data. The Gaia Simulator is a col-
lection of three data generators designed for this task: the Gaia Instrument
and Basic Image Simulator (GIBIS, Babusiaux, 2005), the Gaia System Sim-
ulator (GASS, Masana et al., 2010), and the Gaia Object Generator (GOG,
Luri et al., 2014). Through these three packages, the production of the sim-
ulated observation images down to pixel level, Gaia telemetry stream, and
intermediate or final catalogue data is possible.

3.1.1 Gaia Universe Model Snapshot and the Besançon galaxy model

One basic component of the Gaia Simulator is its Universe Model (UM), which
is used to create object catalogues down to a particular limiting magnitude
(in our case G = 20 mag for Gaia). For stellar sources, the UM is based on
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the Besançon galaxy model (Robin et al., 2003). This model simulates the
stellar content of the Galaxy, including stellar distribution and a number of
object properties. It produces stellar objects based on the four main stellar
populations (thin disk, thick disk, halo, and bulge), each population with its
own star formation history and stellar evolutionary models. Additionally, a
number of object-specific properties are also assigned to each object, dependent
on its type. Possible objects are stars (single and multiple), stellar clusters,
diffuse light, planets, asteroids, comets, resolved galaxies, unresolved extended
galaxies, quasars, AGN, and supernovae. Therefore, the UM is capable of
simulating almost every object type that Gaia can potentially observe. It
can therefore construct simulated object catalogues down to Gaia’s limiting
magnitude.

Building on this, the UM creates for any time, over any section of the
sky (or the whole sky), a set of objects with positions and assigns each a
set of observational properties (Robin et al., 2012). These properties include
distances, apparent magnitudes, spectral characteristics, and kinematics.

Clearly the models and probability distributions used in order to create the
objects with their positions and properties are highly important in producing
a realistic catalogue. The UM has been designed so that the objects it creates
fit as closely as possible to observed statistics and to the latest theoretical
formation and evolution models (Robin et al., 2003). For a statistical analysis
of the underlying potentially observable population (with G ≤ 20 mag) using
the Gaia UM without satellite instrument specifications and error models, see
Robin et al. (2012).

3.1.2 The Gaia Object Generator

The GOG is capable of transforming this UM catalogue into Gaia’s simulated
intermediate and final catalogue data. This is achieved through the use of an-
alytical and numerical error models to create realistic observational errors in
astrometric, photometric, and spectroscopic parameters (Isasi et al., 2010). In
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this way, GOG transforms ‘true’ object properties from the UM into ‘observed’
quantities that have an associated error that depends on the object’s proper-
ties, Gaia’s instrument capabilities, and the type and number of observations
made.

3.1.3 Error models

DPAC is divided into a number of coordination units (CUs), each of which
specialises in a specific area. In GOG we have taken the recommendations
from the various CUs in order to include the most complete picture of Gaia
performance as possible. The CUs are divided into the following areas: CU1,
system architecture; CU2, simulations; CU3, core processing (astrometry);
CU4, object processing (multiple stars, exoplanets, solar system objects, ex-
tended objects); CU5, photometric processing; CU6, spectroscopic processing;
CU7, variability processing; CU8, astrophysical parameters; and CU9, cata-
logue access.

Models for specific parameters have been provided by the various CUs, and
only an outline is given here. In the following description, true refers to UM
data (without errors), transit refers to simulated individual observations (in-
cluding errors), and observed to the simulated observed data for the end of
the Gaia mission (including standard errors). Transit is defined as a single
complete pass of the Gaia focal plane, crossing 9 CCDs. Throughout, error
refers to the formal standard error on a measurement.

Astrometric error model

The formal error on the parallax, σ$, is calculated following the expression:

σ$ = m · g$ ·
√

σ2
η

Neff
+

σ2
cal

Ntransit
(3.1)

• ση is the CCD centroid positioning error. It uses the Cramer Rao (CR)
lower bound in its discrete form, which defines the best possible preci-
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sion of the Maximum Likelihood centroid location estimator. The CR
lower bound requires the line spread function (LSF) derivative for each
sample1, the background, the readout noise, and the source integrated
signal.

• m is the contingency margin that is used to take environmental ef-
fects into account, for example: uncertainties in the on-ground process-
ing, such as uncertainties in relativistic corrections and solar system
ephemeris; effects such as having an imperfect calibrating LSF; errors in
estimating the sky background; and other effects when dealing with real
stars. The default value assumed for the Gaia mission has been set by
ESA as 1.2 and is used in GOG.

• g$ = 1.47/sinξ is a geometrical factor where ξ is known as the solar
aspect angle, with a value of 45◦.

• Neff is the number of elementary CCD transits (Nstrip ×Ntransit).

• Ntransit is the number of field of view transits.

• Nstrip is the number of CCDs in a row on the Gaia focal plane. It has a
value of 9, except for the row that includes the wavefront sensor, which
has 8 CCDs.

• σcal is the calibration noise. A constant value of 5.7 µas has been ap-
plied. This takes into account that the end-of-mission precision on the
astrometric parameters not only depends on the error due to the loca-
tion estimation with each CCD. There are calibration errors from the
CCD calibrations, the uncertainty of the attitude of the satellite and the
uncertainty on the basic angle.

We are enabling the activation of gates, as described in the Gaia Parameter
Database. The Gaia satellite will be smoothly rotating and will constantly

1In Gaia, a sample is defined as a set of individual pixels.
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image the sky by collecting the photons from each source as they pass along
the focal plane. The total time for a source to pass along the focal plane will be
107 seconds, and the electrons accumulated in the a CCD pixel will be passed
along the CCD at the same rate as the source (Time Delay Integration mode).
To avoid saturation for brighter sources, and the resulting loss of astrometric
precision, gates can be activated that limit the exposure time. Here we are
using the default gating system, which could change during the mission.

Following de Bruijne (2012) (see also http://www.cosmos.esa.int/web/

gaia/science-performance), we have assumed that the errors on the posi-
tional and proper motion coordinates can be given respectively by

• σα = 0.787σ$

• σδ = 0.699σ$

• σµα = 0.556σ$

• σµδ = 0.496σ$

Photometric error model

GOG uses the single CCD transit photometry error σp,j (Jordi et al., 2010)
defined as

σp,j[mag] = 2.5 · log10(e) ·

√
faperture · sj + (bj + r2) · ns · (1 + ns

nb
)

faperture · sj
(3.2)

to compute either the single transit errors or the end-of-mission errors.
We assume, following an ‘aperture photometry’ approach, that the object

flux sj is measured in a rectangular ‘aperture’ (window) of ns along-scan object
samples. The sky background bj is assumed to be measured in nb background
samples, and r is CCD readout noise. The faperture · sj is expressed in units
of photo-electrons (e−), and denotes the object flux in photometric band j
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contained in the ‘aperture’ (window) of ns samples, after a CCD crossing.
The number faperture thus represents the fraction of the object flux measured
in the aperture window.

For the single transit and end-of-mission data, the same expression is used
for the standard deviation calculation

σG,j = m ·
√
σ2
p,j + σ2

cal

Neff
(3.3)

where Neff is the number of elementary CCD transits (Nstrip × Ntransit), with
(Nstrip = 1 and Ntransit) = 1 for a single transit and equal to the number of
transits for the end-of-mission photometry. The calibration noise σcal has a
fixed value of σcal = 30 mmag. Use of a fixed value of the centroiding error
is possible because this error is only relevant for brighter stars, due to their
centroiding errors being smaller than the calibration error.

Radial velocity spectrometer errors

CU6 tables (see Table 3.1) using the stars’ physical parameters and apparent
magnitude are used to obtain σVr . They were computed following the prescrip-
tions of Katz et al. (2004) and later updates. Those tables have been provided
for one and 40 field-of-view transits, therefore the value for 40 transits is used
here to calculate the average end-of-mission errors in RVS.

Given the information on the apparent Johnson V magnitude and the at-
mospheric parameters of each star (from the UM), we select from Table 3.1
the closest spectral type and return the corresponding radial velocity error.
Since Table 3.1 is given for [Fe/H]=0 alone, a correction is made on the ap-
parent magnitude in order to take different metallicities into account: for each
variation in metallicity of ∆[Fe/H] = −1.5 dex, the magnitude is increased by
V = 0.5 mag.

We have set a lower limit on the wavelength calibration error, giving a
lower limit on the radial velocity error of 1 km·s−1. For the faintest stars
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the spectra will be of poor quality and will not contain enough information
to enable accurate estimation of the radial velocity. Owing to the limited
bandwidth in the downlink of Gaia data to Earth, poor quality spectra will
not be transmitted. We therefore set an upper limit on the radial velocity
error of 20 km·s−1, beyond which we assume that there will be no data. The
exact point at which the data will be assumed to have too low a quality is still
unknown2.

Physical parameters

GOG uses the stellar parametrisation performance given by CU8 to calculate
error estimations for effective temperature, line-of-sight extinction, metallicity,
and surface gravity. The colour-independent extinction parameter A0 is used in
preference to the band specific extinctions AV or AG, because A0 is a property
of the interstellar medium alone (Bailer-Jones, 2011). CU8 use three different
algorithms to calculate physical parameters using spectrophotometry (see Liu
et al. (2012)).

It should be noted that the errors calculated here are calculated only as a
function of apparent magnitude. However, as described in Liu et al. (2012),
there are clear dependencies on the spectral type of the star, because some
star types may or may not exhibit spectral features required for parameter
determination. Additionally, Liu et al. (2012) report a strong correlation be-
tween the estimation of effective temperature and extinction. This correlation
is not simulated in GOG. Following the recommendation of CU8, calculating
errors of physical parameters depends on apparent magnitude and is split into
two cases, objects with A0 < 1 mag and A0 ≥ 1 mag.

In GOG, σTeff , σA0 , σFe/H and σlog g are calculated from a Gamma distribu-

2And is expected to change due to mitigation efforts of the Gaia stray light issue outlined
in Sect. 3.1.4
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HH
HHH

HHH
Type

V
8.5 9.0 9.5 10 10.5 11.5 12 12.5 13 13.5 14 14.5 15 15.5 16 16.5 17 17.5

B0V 1.2 1.6 2 2.7 3.8 6.8 9.7 14.5 24.8 n n n n n n n n n
B5V 1 1.1 1.4 1.9 2.5 5.1 6.9 10 15.3 24.1 n n n n n n n n
A0V 1 1 1 1 1 1.3 1.8 2.6 3.9 5.7 8.6 14.6 32.5 n n n n n
A5V 1 1 1 1 1 1 1 1.3 2 4.2 6.9 11.1 20.1 n n n n n
F0V 1 1 1 1 1 1 1 1 1.5 2.1 3.2 5.3 7.8 12.7 23.4 n n n
G0V 1 1 1 1 1 1 1 1 1 1.4 2.1 3 4.8 7.9 12.4 19.6 n n
G5V 1 1 1 1 1 1 1 1 1 1.2 1.9 2.8 4.4 6.3 10.1 17.6 n n
K0V 1 1 1 1 1 1 1 1 1 1.1 1.4 2.1 3.3 5.1 8.1 12.6 24.9 n
K4V 1 1 1 1 1 1 1 1 1 1 1.1 1.6 2.7 3.6 5.2 8.4 14.5 30
K1III 1 1 1 1 1 1 1 1 1 1 1 1.2 1.8 2.7 4.2 6.8 10.3 18

Table 3.1: The average end-of-mission formal error in radial velocity (based on Katz et al. (2004)) with an assumed average of
40 field-of-view transits, in km·s−1, for each spectral type. The numbers in the top row are Johnson apparent V magnitudes.
Fields marked by “n” are assumed to be too faint to produce spectra with sufficient quality for radial velocity determination. Stars
with these magnitudes will have no radial velocity information.



tion, with shape parameter α and scale parameter θ :

f(σ;α, θ) =
1

Γ(σ)θα
σα−1e−

x
θ (3.4)

where α and θ are obtained from the following expressions, which have been
calculated to give each σ a close approximation to the CU8 algorithm results.
A gamma distribution was selected for ease of implementation and for its
ability to statistically recreate the CU8 results to a reasonable approximation.
A gamma distribution is also only non-zero for positive values of sigma. This
is essential when modelling errors because, of course, it is impossible to have
a negative error. The following Gamma distribution parameters are from an
E. Antiche internal communication:

• For stars with A0 < 1 mag:

αA0 = 0.204− 0.032G+ 0.001G2

αlog g = 0.151− 0.019G+ 0.001G2

αFe/H = 0.295− 0.047G+ 0.002G2

αTeff = 78.2− 10.3G+ 0.46G2

θA0 = 0.084

θlog g = 0.160

θFe/H = 0.121

θTeff = 28.2.

• For stars with A0 ≥ 1 mag:

αA0 = 0.178− 0.026G+ 0.001G2
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αlog g = 0.319− 0.044G+ 0.002G2

αFe/H = 0.717− 0.115G+ 0.005G2

αTeff = 67.3− 7.85G+ 0.35G2

θA0 = 0.096

θlog g = 0.179

θFe/H = 0.353

θTeff = 33.5.

The Gamma distributions thus obtained for each parameter are used to
generate a formal error for each parameter for each individual star, aiming to
statistically (but not individually) reproduce the results that will be obtained
by the application of the CU8 algorithms and then included in the Gaia Cat-
alogue.

It should be noted that in the stellar parametrisation algorithms used in Liu
et al. (2012), a degeneracy is reported between extinction and effective tem-
perature owing to the lack of resolved spectral lines only sensitive to effective
temperature. In GOG, this degeneracy has not been taken into account, and
the precisions of each of the four stellar parameters is simulated independently.

Additionally, the results of Liu et al. (2012) have recently been updated,
and Bailer-Jones et al. (2013) gives the latest results regarding the capabilities
of physical parameter determination. This latest paper has not been included
in the current version of GOG.

3.1.4 Limitations

Since the publication of the work in this chapter, several anomalies have been
detected in the functioning of the Gaia satellite. There is a stray light is-
sue effecting the Gaia focal plane, which will impact the precision of Gaia’s
measurements, particularly for fainter stars. Additionally, problems of con-
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tamination of the optics are occurring. The contamination is suspected to be
caused to the build up of a fine layer of ice due to the presence of water out-
gassing from some part of the satellite. Finally, there are some unexpected
variations in the basic-angle-monitoring system, which measures the angle of
separation between the two telescopes.

These three issues were unexpected, and their effect and mitigation strate-
gies are still not fully known. The stray light is expected to decrease astromet-
ric performance for the faintest stars by a factor of around 50%, while brighter
stars will be largely unaffected. The RVS spectrometer will be badly effected,
potentially losing around one magnitude from its faint limit. The contami-
nation problem is being treated by heating up the on board optics, and the
extent and duration of any effects are still being calculated, along with future
plans for further decontamination. A cause for the basic angle variation is still
under investigation by teams at ESA.

Due to the fact that these problems were unexpected and their causes and
effects are still largely unknown, the GOG simulator only includes error models
for the nominal Gaia mission. The reader should therefore be aware that there
will potentially be a strong degradation in the precision of measurements for
fainter stars in the real Gaia catalogue, compared with what has been reported
here. When the effects have been studied and quantified, it is likely that new
error models will be included in GOG in order to provide updated information
about the expected contents of the catalogue. This would allow a comparison
between the nominal mission and the real satellite performance, and enable a
quantitative view of any degradation in performance.

In the present work, only the results for single stars are given in detail. All
of the figures and tables represent the numbers and statistics of only individual
single stars, excluding all binary and multiple systems. Since the performance
of the CU4 processing of the data is largely unknown for binary and multiple
systems, the implementation into GOG of realistic error models has not yet
been possible. While the results presented in Sect. 3.2 are expected to be
reliable under current assumptions for the performance of Gaia, the real Gaia
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Catalogue will differ from these results due to the presence of binary and
multiple systems. By removing binaries from the latter, direct comparison of
the results presented here with the real Gaia Catalogue will not be possible
because of the presence of unresolved binaries, which are difficult to detect.
As a simulator, GOG relies heavily on all inputs and assumptions supplied
both from the UM or from the Gaia predicted performance and error models.

In our simulations we used an exact cut at G = 20 mag, beyond which no
stars are observed. In reality, in regions of low density observations of stars
up to 20.5 mag could be possible. Inversely, very crowded regions may not
be complete up to 20 mag, or the numbers of observations per star over the
five-year mission may be reduced in these regions.

There is no simulation of the impact of crowding on object detection or
the detection of components in binary and multiple systems. This can lead
to unrealistic quality in all observed data in the most crowded regions of the
plane of the Galaxy, to overestimates for star counts in the bulge, and to a
lack of features related to the disk and bulge in Figs. 3.4 and 3.21.

Additionally, GOG uses the nominal Gaia scanning law to calculate the
number of field of view transits per object over the five years of the mission
while Gaia is operating in normal mode. There will be an additional one-month
period at the start of the mission using an ecliptic pole scanning law, and this
has not been taken into account. It may lead to a slight underestimation of the
number of transits, and therefore a slight overestimation of errors, for some
stars near the ecliptic poles.

There is the possibility that the Gaia mission will be extended above the
nominal five-year mission. Since this idea is under discussion and has not yet
been confirmed or discarded, we only present results for the Gaia mission as
originally planned.

If the length of the mission is increased, the number of field-of-view transits
will increase, and the precision per object will improve. If the proposal is
accepted, the GOG simulator could be used to provide updated statistics for
the expected catalogue without extensive modification.
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3.1.5 Methods and statistics

Considering current computing capabilities, it is not straightforward to make
statistics and visualisations when dealing with catalogues of such a large size.
A specific tool has been created by DPAC which is capable of extracting in-
formation and visualising results, with excellent scalability allowing its use for
huge datasets and distributed computing systems.

The Gaia Analysis Tool (GAT) is a data analysis package that allows,
through three distinct frameworks: the generation of statistics, validation of
data, and generation of catalogues. It currently handles both UM and GOG
generated data, and could be adapted to handle other data types.

Every statistical analysis is performed by a Statistical Analysis Module
(SAM), with several grouped into a single XML file as an input to GAT.
Each SAM can contain a set of filters, enabling analysis of specific subsets of
the data. This allows the production of a wide range of statistics for objects
satisfying any number of specific user-defined criteria or for the catalogue as
a whole.

GAT creates a number of different statistics outputs including histograms,
sky density maps and HR diagrams. After the GAT execution, statistics out-
put are stored to either generate a report or to be analysed using the GAT
Displaying tool.

Because we have information from not only observations of a population
but also of the observed population itself, comparison is possible between the
simulated Gaia Catalogue and the simulated ‘true’ population, allowing large
scope for investigating the precision3 of the observations and differences be-
tween the two catalogues. Clearly this is only possible with simulated data
and cannot be attempted with the true Gaia Catalogue, so it is an effective
way to investigate the possible extent and effect of observational errors and

3Here we assume the standard definition of accuracy and precision: accuracy is the
closeness of a result (or set) to the actual value, i.e. it is a measure of systematics or bias.
Precision is the extent of the random variability of the measurement, i.e. what is called
observational errors above.
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selection bias on the real Gaia Catalogue, where this kind of comparison is not
possible.

GOG can be used in the preparations for validating the true Gaia Catalogue,
by testing the GOG catalogue for accuracy3 and precision. In special cases,
observational biases could even be implemented into the code to allow thorough
testing of validation methods.

3.2 A statistical analysis

The GOG simulator has been used to generate the simulated final mission cat-
alogue for Gaia, down to magnitude G = 20. The simulation was performed on
the MareNostrum super computer4 at the Barcelona Supercomputing Centre
(Centre Nacional de Supercomputació), and it took 400 thousand CPU hours.
An extensive set of validations and statistics have been produced using GAT
to validate performance of the simulator. Below we include a subset of these
statistics for the most interesting cases to give an overview of the expected
Gaia Catalogue.

3.2.1 General

In total, GOG has produced a catalogue of about one billion objects, consist-
ing of 523 million individual single stars and 484 million binary or multiple
systems. The total number of stars, including the components of binary and
multiple systems is 1.6 billion. The skymap of the total flux detected over
the entire five-year mission is given in Fig. 3.1. Although GOG can produce
extragalactic sources, none have been simulated here.

The following discussion is split into sections for different types of objects of
interest. Section 3.2.2 covers all galactic stellar sources. Section 3.2.3 covers all
variable objects. Section 3.2.4 is a discussion of physical parameters estimated

4The authors thankfully acknowledge the computer resources, technical expertise and
assistance provided by the Red Española de Supercomputación.
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Figure 3.1: Skymap of total integrated flux over the Milky Way, in the G band. The colour
bar represents a relative scale, from maximum flux in white to minimum flux in black. The
figure is plotted in galactic coordinates with the galactic-longitude orientation swapped left
to right.

by Gaia. All objects in these sections are within the Milky Way.
To make the presentation of performance as clear as possible, all binary and

multiple systems and their components have been removed from the following
statistics. This is due to complicating effects that arise when predicting the
performance of the data processing of orbital parameters of binary systems,
some of which do not yet have a quantitative description given by the relevant
CUs. For example, GOG does not yet contain an orbital solution in its as-
trometric error models, and the effects of unresolved systems on photometry
and astrophysical parameter determination have not yet been well determined.
Therefore, the numbers presented are only for individual single stars and there-
fore around half of the full one billion objects simulated. Of the single stars
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Standard error LQ Median Mean UQ

Parallax (µas) 80 140 147 210
α∗ (µas) 40 80 91 130
δ (µas) 50 100 103 150
µα (µas·yr−1) 40 80 82 120
µδ (µas·yr−1) 40 70 73 110
G (mmag) 2 3 3.0 4
GBP (mmag) 6 11 14.6 19
GRP (mmag) 5 7 7.7 10
GRV S (mmag) 6 11 13.2 18
Radial velocity (km·s−1) 3 7 8.0 13
Extinction (mag) 0.16 0.21 0.21 0.26
Metallicity (Fe/H) 0.46 0.57 0.57 0.73
Surface gravity (log g) 0.34 0.35 0.45 0.58
Effective temperature (K) 280 350 388 530

Table 3.2: Mean and median value of the end-of-mission error in each observable, along
with the upper (UQ) and lower (LQ) 25% quartile. Since the error distributions are not
symmetrical, the mean value should not be used directly, and is given only to give an idea
of the approximate level of Gaia’s precision. The median G magnitude of all single stars is
18.9 mag.

presented in this work, 74 million are within the radial velocity spectrometer
magnitude range.

Table 3.2 gives the mean and median error for each of the observed param-
eters discussed in this work, along with the upper and lower 25% quartile.

In Figs. 3.2 and 3.3, the mean error for parallax, position, proper motion,
and photometry in the four Gaia bands are given as a function of G magni-
tude. Also, the mean error in radial velocity is given as a function of GRV S

magnitude. The sharp jumps in the mean error in astrometric parameters be-
tween 8 and 12 mag are due to the activation of gates for the brighter sources
in an attempt to prevent CCD saturation (see Sect. 3.1.3).
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Figure 3.2: Mean end-of-mission error as a function of G magnitude for parallax and posi-
tion ( top), and proper motion (bottom).
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Figure 3.3: Mean end-of-mission error as a function of G magnitude for photometry in
the four Gaia passbands ( top), and the mean end-of-mission error in radial velocity as a
function of GRV S magnitude (bottom).



3.2.2 Stars

Parallax

The error in parallax measurements for Gaia depends on the magnitude of the
source, the number of observations made, and the true value of the parallax.
Figure 3.4 shows the mean parallax error over the sky. Its shape clearly follows
that of the Gaia scanning law. The red area corresponding to the region of
worst precision is due to the bulge population, which suffers from high levels
of reddening. The faint ring around the centre of the figure corresponds to
the disk of the Galaxy, remembering that the plot is given in equatorial coor-
dinates. The blue areas corresponding to regions of improved mean precision
are areas with a higher number of observations. The characteristic shape of
this plot is due to the Gaia scanning law.

The distribution of parallax measurements for all single stars is given in
Fig. 3.5. Note that there is a significant number of stars with negative par-
allax measurements. Negative parallax measurements arise due to the scatter
caused by observational errors being larger than the parallax itself. While
non-physical, negative parallaxes do contain information and methods utilis-
ing parallax information should include these stars to avoid biasing the result.

The relative parallax error σ$/$ is given in Fig. 3.6 for stars split by spec-
tral type. This cumulative histogram shows the number of stars at or below
each relative parallax error, and allows comparison of the relative number of
each spectral type expected in the catalogue. The distribution of parallax er-
rors is given for each stellar population in Fig. 3.7 and for each spectral type
in Fig. 3.8. The error in parallax as a function of measured G magnitude is
given in Fig. 3.9 and as a function of the real parallax in Fig. 3.10.

The mean parallax error for all single stars is 147.0 µas. The number of
single stars falling below three relative parallax error limits is given in Table
3.3 for each spectral type and in Table 3.4 for each luminosity class. For those
interested in a specific type of star, Table 3.5 gives the full breakdown of the
number of single stars falling below three relative parallax error limits for every
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spectral type and luminosity class.

Figure 3.4: Sky map (healpix) of mean parallax error for all single stars in equatorial co-
ordinates. Colour scale is mean parallax error in µas. The red area is the location of the
bulge.
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Spec. type Total σ$/$ < 1 σ$/$ < 0.2 σ$/$ < 0.05

O 3.3×102 87.5 57.5 29.2
B 3.4×105 74.0 33.0 12.2
A 5.3×106 79.7 38.0 14.7
F 1.2×108 66.2 20.1 6.1
G 2.0×108 67.4 20.0 5.7
K 1.5×108 82.4 30.9 8.6
M 4.5×107 98.1 68.0 18.6

Table 3.3: Total number of single star for each spectral type, along with the percentage of
those that fall below each relative parallax error limit; e.g., 68% of M-type stars have a
relative parallax error better than 20%.

Lum. class Total σ$/$ < 1 σ$/$ < 0.2 σ$/$ < 0.05

Supergiant 5.6×103 91.5 65.9 36.8
Bright giant 6.9×105 87.1 57.9 25.1
Giant 6.6×107 67.5 21.4 7.0
Sub-giant 7.5×107 60.2 16.8 5.3
Main sequence 3.8×108 78.1 30.7 8.5
White dwarf 2.1×105 100.0 94.3 41.9

Table 3.4: Total number of single stars for each luminosity class, along with the percentage
that fall below each relative parallax error limit.
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Type Total σ$/$ < 1 σ$/$ < 0.2 σ$/$ < 0.05

OII 4 100 100 75
OIII 17 100 65 35
OIV 26 96 50 31
OV 203 89 57 27
BII 80 91 50 21
BIII 1.5×105 58 19 8
BIV 1.1×105 81 42 17
BV 2.1×105 81 38 13
AII 6.7×103 79 42 19
AIII 9.5×105 76 37 16
AIV 1.4×106 80 40 16
AV 2.7×106 81 37 14
FII 2.0×103 81 46 22
FIII 1.7×106 76 33 12
FIV 3.6×107 67 22 7
FV 7.9×107 66 19 5
GII 1.6×105 81 43 20
GIII 2.0×107 61 17 5
GIV 3.7×107 53 11 3
GV 1.5×108 72 23 6
KII 2.5×105 81 43 19
KIII 4.0×107 69 21 7
KV 1.1×108 87 34 9
MII 1.1×104 89 59 32
MIII 2.2×106 85 46 16
MV 4.2×107 99 70 19
WD 2.1×105 100 94 42

Table 3.5: Total number of single stars for each stellar classification, along with the percent-
age that fall below each relative parallax error limit.
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Figure 3.5: Histogram of parallax for all single stars. The histogram contains 99.5% of all
data.
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Figure 3.6: Cumulative histogram of relative parallax error for all single stars, split by
spectral type. The histogram range displays 74% of all data.
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Figure 3.7: Histogram of end-of-mission parallax error for all single stars, split by stellar
population.
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Figure 3.8: Histogram of end-of-mission parallax error for all single stars, split by spectral
type.
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Figure 3.9: End-of-mission parallax error against G magnitude for all single stars. The
colour scale represents the log of density of objects in a bin size of 80 mmag by 2.5 µas.
White area represents zero stars.
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Figure 3.10: End-of-mission parallax error against parallax for all single stars. The colour
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Position

Gaia will be capable of measuring the position of each observed star at an
unprecedented accuracy, producing the most precise full sky position catalogue
to date. Position information will also be amongst the data that will form
the first preliminary data release, expected in the summer of 2016 (http:
//www.cosmos.esa.int/web/gaia/release).

The mean error is 90 µas for right ascension and 103 µas for declination.
The distribution of error in right ascension and declination as a function of
the true value, along with a histogram of the error, are given in Figs. 3.11 and
3.12. The overdensities are due to the bulge of the Galaxy.

Proper motion and radial velocity

In addition to parallax measurements, Gaia will also measure proper motions
for all stars it detects. The proper motion in right ascension and declination
is labelled as µα and µδ, respectively. The mean error in µα is 81.7 µas·yr−1,
and in µδ is 72.9 µas·yr−1. The distribution of errors in both components
of proper motion is given in Fig. 3.13. The first preliminary data release is
expected to contain improved proper motion data for the stars of the Hipparcos
catalogue. This preliminary release will combine the hipparcos data with Gaia
data collected and processed by the time of release in order to benefit from
the long baseline between the two sets of observations.

The radial velocity is measured by the on-board radial velocity spectrometer.
This instrument is only sensitive to stars down to GRV S = 16 magnitude. We
assume an upper limit on the error in radial velocity of 20 km·s−1, and assume
that stars with a precision worse than this will not be given any radial velocity
information.

Of the 523 million measured individual Milky Way stars, 74 million have
a radial velocity measurement5. The mean error in the radial velocity mea-

5This is expected to change due to the effect of stray light issues onboard Gaia.
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surement is 8.0 km·s−1. The distribution of radial velocity error is given for
each G magnitude in Fig. 3.14, and in Fig. 3.15 split by spectral type. The
radial velocity error is given as a function of GRV S magnitude in Fig. 3.16.
Note that due to the stray light issues highlighted in Sect. 3.1.4, it is expected
that there will be a strong degradation in the RVS spectrometer results. Due
to the effects of the stray light, the spectra obtained for the faintest stars
will be badly effected and it expected that the limiting magnitude will be
reduced by around one magnitude. The spectrometer was designed to run
in both high resolution and low resolution mode, and was planned to switch
between modes depending on the strength of the source. It is likely that
the instrument will be used only in HR mode in order to mitigate some of
the issues. The exact extent of the effect is still under investigation. Check
http://www.cosmos.esa.int/web/gaia/science-performance for the lat-
est information.
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Figure 3.13: Error in proper motion for alpha and delta for all single stars.
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Figure 3.17: 2D histograms showing error in proper motion in alpha against G magnitude.
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Photometry

The end-of-mission error in each measurement as a function of G magnitude
is given in Fig. 3.19.

Gaia will produce low-resolution spectra, in addition to measuring the mag-
nitude of each source in the Gaia bands G, GBP , GRP , and GRV S. Whilst
GOG is capable of simulating these spectra, they have not been included in
the present simulations owing to the long computation time and the large
storage space requirement of a catalogue of spectra for one billion sources.

Figure 3.20 shows the distribution in the error of each photometric measure-
ment. As can be seen in this figure, the error in G is much lower than for the
other instruments, and for all stars it is less than 8 mmag. The mean error
in G is 3.0 mmag. The mean error in GBP and GRP is 14.6 mmag and 7.7
mmag, respectively. The mean error in GRV S is 13.2 mmag, although it must
be remembered that the radial velocity spectroscopy instrument is limited to
brighter than GRV S = 16.

Figure 3.21 shows the mean photometric error as a function of position on
the sky for the four Gaia photometric passbands. The structure seen in all
four maps is derived from the Gaia scanning law.

It is interesting to point out the ring in the four plots of Fig. 3.21 caused by
the disk of the Galaxy. Owing to significant levels of interstellar dust in the
disk of the Galaxy, visible objects are generally much redder. This reddening
causes objects to lose flux at the bluer end of the spectrum, making them
appear fainter to the GBP photometer. Therefore the plane of the Galaxy can
be seen as an increase in the mean photometric error in the GBP error map.

Conversely, the disk of the Galaxy shows as a ring of decreased mean photo-
metric error in the GRP and GRV S maps, since the sensitivity of their spectra
is skewed more towards the redder end of the spectrum. It is important to
note, however, that the effect of crowding on photometry is not accounted for
in GOG.
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Figure 3.19: End-of-mission errors in photometry as a function of G magnitude. The colour
scale represents log density of objects in a bin size of 80 mmag by 0.4 mmag. Top left, G
magnitude; top right, GBP ; bottom left, GRP ; bottom right, GRV S. White area represents
zero stars.

3.2.3 Variables

Gaia will be continuously imaging the sky over its full five-year mission, and
each individual object will be observed 70 times on average. The scanning law
means that the time between repeated observations varies, and Gaia will be
incredibly useful for detecting many types of variable stars. GOG produces
a total of 10.8 million single variable objects. This number comes from the
UM (Robin et al., 2012) and assumes 100% variability detection. The exact
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Figure 3.20: Histogram of error in G, GRV S, GRP , and GBP for all single stars.

detection rates and the classification accuracy for each variability type are still
unknown. In fact, the numbers of variable objects in the catalogue is expected
to be higher than 10.8 million because some variable star types have not yet
been implemented (see Robin et al. 2012 for a more detailed description).

The distribution of relative parallax error is given for each type of variable
star in Fig. 3.22. The numbers of each type of variable produced by GOG are
given in Table 3.6, along with the number of each type that falls below each
relative parallax error limit.

In general, the numbers of variables presented in this work are lower than
in Robin et al. (2012) by a factor of two or three. This is expected, because
in the present work we are excluding all variables that are part of binary or
multiple systems, and presenting the number of single variable stars alone.

However, the number of emission variables is higher in the present work.
This is due to implementation of new types of emission stars: Oe, Ae, dMe,
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Figure 3.21: HealPixMap in equatorial coordinates of the mean error in: Top left: G; top
right: GBP ; lower left: GRP ; lower right: GRV S. The colour scale gives the mean photo-
metric error in mmag. The colour scales are different due to differences in the maximum
mean magnitude.

and WR stars. These are now included as emission variables but were not
simulated in Robin et al. (2012). Additionally, the number of Mira variable
stars is higher in the present work. This is from an implementation error in
the version of the UM used in Robin et al. (2012), which has been fixed in the
version used in the present work.

Cepheids and RR-Lyrae

Cepheids and RR-Lyrae are types of pulsating variable stars. Their regular
pulsation and a tight period-luminosity relation make them excellent standard
candles, and therefore of particular interest in studies of galactic structure
and the distance scale. Figure 3.23 shows the histogram of error in parallax
specifically for Cepheid and RR-Lyrae variable stars, while Fig. 3.24 shows
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the errors in proper motions for Cepheids and RR-Lyrae.
It is clear that the vast majority of observed Cepheids will have very good

precision, around the lower limit for Gaia. This is because they are very
luminous, and will therefore in most cases have their mesaurement precision
dominated by calibration effects rather than by photon noise. This is good
news for those using Cepheids as distance indicators. We introduce a method
for calibration of the Cepheid period-luminosity relation in Ch. 5.

For RR-Lyrae stars, which are older populations stars with lower liminos-
ity, the expected precision is generally worse, ranging from around 50 to 300
µas. Whilst they are fainter, and therefore generally of lower precision than
Cepheids, they are much more numerous. Current trigonometric parallax of
RR-Lyrae stars is limited to only a handful of stars (e.g. those from Benedict
et al., 2002), and the availability of Gaia data for a significant number of these
stars will therefore be revolutionary.

Whilst the current results are presented only for the Milky Way, it is also
expected that Gaia will directly observe trigonometric parallax for stars within
the Magellanic Clouds. See Sect. 5.5 for a discussion of the impact of Gaia in
the observation and calibration of LMC Cepheids and RR-Lyraes.

3.2.4 Physical parameters

The addition of low-resolution spectral photometers on-board Gaia has made
it capable of providing information on several object parameters including an
estimate of line-of-sight extinction, effective temperature, metallicity, and sur-
face gravity. Discussion of each individual physical parameter is given below.

Provided here are results for an approximation of the results of Liu et al.
(2012), which reproduces CU8 results statistically but not individually for each
star. Therefore for detailed analysis of specific object types, care should be
taken. Again, due to the very long tails of the error distributions caused by
large numbers of extremely faint stars, the mean values given below should be
taken with caution.
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Variability type Total σ$/$ < 5 σ$/$ < 1 σ$/$ < 0.5 σ$/$ < 0.2 σ$/$ < 0.05 σ$/$ < 0.01

Non-variables 5.1 ×108 88 74 55 27 7.7 1.4
Emission 3.3 ×106 99 97 92 62 16 2.4
Flaring 2.1 ×105 99 99 98 88 33 4.6
δ Scuti 3.3 ×106 90 78 61 35 13 3.5
Semiregular 3.6 ×106 92 82 68 40 14 1.4
γ Dor 6.0 ×105 91 80 63 35 13 3.2
RR Lyrae AB-type 2.4 ×104 67 45 25 7.9 1.0 0.1
Mira 2.3 ×105 92 83 70 44 16 1.2
ZZ Ceti 1.9 ×104 100 100 99 94 33 4.1
ACV 3.5 ×104 91 80 64 39 15 3.8
RR Lyrae C-type 5.6 ×103 68 45 25 7.8 0.9 0.1
ρ Ap 3.0 ×103 92 82 65 38 14 3.8
Cepheid 1.8 ×103 95 88 78 59 30 0.1

Table 3.6: Total number of single stars of each variability type, and the percentage of each that falls below each relative parallax
error limit: 500%, 100%, 50%, 20%, 5%, and 1%.
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Extinction

Across many fields of astronomy, the effects of extinction on the apparent
magnitude and colour of stars can play a major role in contributing to uncer-
tainty. An accurate estimation of extinction will prove highly useful for many
applications of the Gaia Catalogue.

Figure 3.25 shows the comparison between true extinction and the simulated
Gaia estimate. For the vast majority of stars, the Gaia estimated extinction
lies very close to the true value. This could prove very useful when, for exam-
ple, using parallax and apparent magnitude data from Gaia because accurate
extinction estimates are required to constrain the absolute magnitude of an
object.

Additionally, these results show that the Gaia data will be highly useful in
terms of mapping galactic extinction in three dimensions, thanks to the com-
bination of a large number of accurate parallax and extinction measurements.
The negative extinction values in Fig. 3.25 are of course non-physical and are
simply the result of applying a Gaussian random error to stars with near zero
extinction.

The discontinuity at A0 = 1 in the top left-hand panel of Fig. 3.25 comes
from the distinction made between high and low extinction stars in the pre-
sentation of the results in Liu et al. (2012). Our algorithm is based on results
given in that paper, where the dependence on the extinction has been simpli-
fied to two cases, stars with A0 < 1 and those with A0 > 1. This distinction
was made only for presentation of the results, and the real results from the
DPAC algorithms will not show this discontinuity. Liu et al. (2012) report a
degeneracy between extinction and effective temperature due to the lack of
resolved spectral lines sensitive only to effective temperature.

Effective temperature

For all objects in the GOG catalogue, the measured effective temperature
ranges between 850 and 102000 K. The error in effective temperature is less
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than 640 K for all stars, with a mean value of 388 K. Figure 3.25 shows the
comparison between true object effective temperature and the Gaia estimation.
The thin lines visible in Fig. 3.25 are an artefact from the UM, which uses a
Hess diagram to produce stars, leading to some quantisation in the effective
temperature of simulated stars.

Metallicity

Metallicity can be estimated by Gaia in the form of [Fe/H]. Measured values
range from -6.5 to +4.6. The mean error in metallicity estimate is 0.57 dex.
The relatively high error in metallicity estimate can lead a large difference
between real and observed values, as seen in Fig. 3.25.

Surface gravity

The mean error in surface gravity is 0.45 dex. The comparison between real
and observed surface gravity can be seen in Fig. 3.25. As with metallicity, the
lines at regular intervals at high gravity in this plot are due to the UM (Robin
et al., 2012).

3.3 Conclusions

The Gaia Object Generator provides the most complete picture to date of what
can be expected from the Gaia astrometric mission. Its simulated catalogue
provides useful insight into how various types of objects will be observed and
how each of their observables will appear after including observational errors
and instrument effects. The simulated catalogue includes directly observed
quantities, such as sky position and parallax, as well as derived quantities,
such as interstellar extinction and metallicity.

Additionally, the full sky simulation described here is useful for gaining an
idea of the size and format of the eventual Gaia Catalogue, for preparing
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Figure 3.25: Comparison of the true values of physical parameters with the GOG ‘observed’
values for: Top left, extinction; top right, metallicity; bottom left, surface gravity; and
bottom right, effective temperature. The colour scales represent log density of objects in a
bin size of: top left, 50 by 50 mmag; top right, 0.4 by 0.4 dex; bottom left, 0.5 by 0.5 dex;
and bottom right, 100 by 100 K. White area represents zero stars.

tools and hardware for hosting and distribution of the data, and for becoming
familiar with working with such a large and rich dataset.

In addition to the stellar simulation described in this work, there are plans
to generate other simulated catalogues of interest, so that a more complete
version of the simulated Gaia Catalogue can be compiled. Already available
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in GOG are other objects such as more than 500 open clusters, the Magellanic
Clouds, supernovae, and other types of extragalactic objects.

Here we have focussed on the simulated catalogue from the inbuilt Gaia
Universe Model, based on the Besançon Galaxy model. However, GOG can
alternatively be supplied with an input catalogue generated by the user. This
way, simulated data from any other model can be processed with GOG to
obtain simulated Gaia observations of specific interest to the individual user.
The input can be either synthetic data on a specific star or catalogue, or an
entire simulated survey such as those generated using Galaxia (Sharma et al.,
2011), provided a minimum of input information is supplied (e.g. position,
distance, apparent magnitude, and colour).

With GOG, the capabilities of the instrument can be explored, and it is
possible to gain insight into the expected performance for specific types of
objects. While only a subset of the available statistics have been reproduced
here, it is possible to obtain the full set of available statistics at request.

We are working to make the full simulated catalogue publicly available, so
that interested individuals can begin working with data similar to the forth-
coming Gaia Catalogue. The full mock catalogue has been ingested into the
European Space Astronomy Centre (ESAC) test archive.
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4
Basic luminosity calibration

Calculating the absolute magnitude of a star from a its distance and apparent
magnitude is possible through the well known Pogson law:

M = m− 5 log(d) + 5− A (4.1)

where M is the absolute magnitude, m is the apparent magnitude, d the
distance, and A the interstellar extinction. However, as highlighted in the
introductory Ch. 2, the result of the direct application of this relation by
substituting the parallax $ = 1/d can lead to a biased result. The question of
how best to obtain the absolute magnitude from parallax data has been tackled
various times in the literature. Methods of Maximum Likelihood Estimation
(MLE) were introduced for the use of statistical parallaxes by Rigal (1958).
Statistical parallaxes are those inferred from proper motion and radial velocity
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information for groups of stars on the sky. Although the initial method by
Rigal made several very strong assumptions (e.g. that all of the stars had
the same absolute magnitude, and that there were no observational errors), it
included an explicit definition of the spatial distribution of the population and
allowed simultaneous estimation of both the mean absolute magnitude of the
population and the mean motion of the sun.

Jung (1970) improved upon the work by Rigal to overcome several of its
limitations, for example by including a distribution of absolute magnitudes
and a way of estimating the effects of observational errors. The algorithm of
Jung was further improved by Heck (1975) by including more parameters and
through the use of numerical methods to avoid of some of the simplifications
in the equations needed due to the very limited computing resources of the
time. The further improvements were made by Heck (1978), which proved a
useful tool for luminosity calibration with statistical parallaxes from proper
motion and radial velocity information, and led to several applications for
determination of the absolute magnitude of specific star types, e.g. Jaschek
et al. (1980) for Hg-Mg stars and Grenier et al. (1985) for main sequence stars.

However, the method of MLE at that time still had several major limita-
tions: it used approximations of complex likelihood functions to avoid heavy
computation requirements; the lack of a selection function lead to a Malmquist
bias on the resulting apparent magnitudes; there was no inclusion of interstel-
lar extinction; and only simple assumed distributions were used, such as a
uniform spatial distribution. Additionally, all prior methods had been focus-
ing on the use of statistical parallax, which was more readily obtainable at
the time due to the availability of proper motion measurements and a lack of
trigonometric parallax measurements.

The MLE method by Ratnatunga & Casertano (1991) included for the first
time terms to take account for selection bias due to incomplete samples. The
next major evolution of the method was not until Luri (1995), when many the
aforementioned limitations of the MLE method were overcome. Additionally,
the timing of these improvements coinciding with the Hipparcos mission gave
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access to a significant sample of absolute trigonometric parallax measurements,
making the method much more widely applicable.

Here, we continue the development following the prescription of Luri (1995).
We extend the method from simple calibration of absolute magnitudes to si-
multaneous estimation of multiple parameters, and derive applications to sev-
eral key aspects of luminosity calibration and the distance scale. This comes
at a time when the Gaia mission will be making the next large advance in
astrometric measurements, allowing the application of the derived methods
to many more wide ranging applications and to stars at distances up to the
Magellanic Clouds.

In the following four chapters we develop several methods for luminosity
calibration. The methods make extensive use of the statistical techniques
introduced in Ch. 2, particularly those of Maximum Likelihood Estimation
(MLE), and Maximum A Posteriori estimation (MAP). As a test case, the
basics of the mathematical formulation of MLE are introduced in this chapter.
Here a simple case of a galactic population of stars is used, which serves well
to introduce the topic and mathematics required.

In Ch. 5, the same MLE method is applied to the more realistic case of
fitting a period-luminosity relation for Cepheid variable stars. In Sect. 5.2,
we define a MAP model fitting approach which is useful for fitting the period-
luminosity or period-luminosity-metallicity relations in the absence of parallax
information. This method has wider applications in that it is generally appli-
cable to fitting a straight line to any x, y data, or a plane to any x, y, z data,
and is available as a stand-alone algorithm. The method has been applied to
real data for RR-Lyrae stars.

In Sect. 5.4, a method for fitting the distance to the Large Magellanic Cloud
is presented. This work tests the capability of Gaia in directly measuring
its distance, utilising absolute trigonometric parallax alone. As no parallax
measurements for stars in the LMC or SMC currently exist, the method has
been tested using GOG simulated data.

In Ch. 6, an approach to fitting the distance, kinematics, and isochrone for
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an open cluster is presented. The mathematical derivation of the method is
shown, along with the results of extensive testing using both real and simulated
data.

4.2 Basic definition

In the most basic sense, luminosity calibration of a population of stars will
derive the absolute magnitude of the population. Usually, the absolute magni-
tude will follow some distribution, which depends on the population at hand.
Stars of a specific spectral type and luminosity class will exhibit a tight range
of absolute magnitudes, whereas when taking a general population of Main
Sequence stars one would expect the absolute magnitude to be distributed
around the main sequence, which leads to a dependence in colour (or temper-
ature). In this initial example, it is assumed that stars exhibit a tight range
of absolute magnitudes, and are distributed in space uniformly. This only
holds true for stars of known spectral type and luminosity class, in the local
neighbourhood.

Assume that a catalogue contains a list of stars with values of apparent
magnitude (m), position (l, b) and parallax ($).

Here a model must be chosen which describes the system at hand. In this
case, the distribution in absolute magnitude can be defined as being given by
a Normal distribution:

ϕM = e
−0.5

(
M−Mmean

σM

)2

(4.2)

where M is the observed absolute magnitude, Mmean is the mean magnitude
of the population, and σM is the intrinsic dispersion of the distribution. The
absolute magnitude is obtained from the observations through the common
relation (neglecting extinction for now):

M = m+ 5 log($) + 5 (4.3)
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A uniform spatial distribution is given by:

ϕ$ = r2cosb (4.4)

Where the distance is obtained from the inverse of the parallax r = 1/$.
As will be the case for almost all observations (including Gaia), we assume a
magnitude limited sample. In order to correctly account for this, a selection
function (S) is introduced in the form of a Heaviside function at the limiting
apparent magnitude mlim, which is magnitude 20 in the case of Gaia:

S = Θ(mg −mlim) (4.5)

All of the above distributions are unnormalised. It is convenient to work
with the unnormalised functions and then normalise the full joint PDF with a
global normalisation factor later. In order to normalise the PDF of the distance
distribution, a limit must be introduced to ϕ$. This upper limit in distance is
arbitrary, provided that it is chosen to be high enough that it does not effect
the spatial or magnitude distribution of the simulated sample, because very
distant stars will be omitted from the sample due to the apparent magnitude
limit.

4.3 Formulation of the ML equation

Starting with the most basic form of the definition of ML estimation, the
Likelihood function, L is defined such that:

L(θ) =
N∏
i=1

P(xi|θ) (4.6)

where P is the combined probability density function (PDF), x is vector con-
taining a set of observables, and θ is a vector describing the set of parameters
which exist in the model. The set of observables refers to a list of ‘observa-
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tions’, but here we assume that the real values are known and there are no
observational errors. This likelihood function is the joint probability of having
found the data, given the parameters of the model. By finding the values for
θ which maximise the value of the likelihood function, L, we find the ML es-
timation of the true values of θ for the given dataset. This is mathematically
equivalent to taking the sum of the log of P :

lnL(θ) =
N∑
i=1

lnP(xi|θ) (4.7)

In our case, the set of N observations x = (x1,x2, ...,xN) are the stars for
which the apparent magnitude, position and parallax are (perfectly) known:
xi = (m,$, l, b). The model parameters are simply the mean and variance of
the distribution of absolute magnitudes θ = (Mmean, σM).

The combined PDF P(xi|θ) is a combination of the PDFs for magnitude
and position, the selection function, and a normalisation constant C−1, such
that:

P(x|θ) = C−1ϕM(m)ϕr($, l, b)S(m) (4.8)

4.3.1 Derivation of the normalisation constant

Normalisation of a PDF is achieved through integration the over the full range
of all parameters:

C =

∫
∀x
ϕM(m)ϕ$($, l, b)S(m) dx (4.9)

The selection function acts to provide a finite limit to the integral over Mg:

C =

∫
r

∫ Mlim

−∞
ϕM(m)dM

∫
l

∫
b

ϕ$($, l, b) db dl dr (4.10)
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Here we use the definition of the error function (erf):

erf(x) =
2√
π

∫ x

0

e−t
2

dt (4.11)

and the complementary error function (cerf):

erfc(x) = 1− erf(x) =
2√
π

∫ ∞
x

e−t
2

dt (4.12)

for the integral over magnitude, giving:

C =

∫ rlim

0

∫ Mlim

−∞
e
−0.5

(
M−Mmean

σMg

)2

dM

∫ π/2

−π/2

∫ 2π

0

r2cosb db dl dr (4.13)

C =

∫ rlim

0

√
π

2
σMerfc

(
−mlim + 5log($) + 5−Mmean√

2σM

)
4πr2 dr (4.14)

Define χ so that:

χ =
mlim + 5log($) + 5−Mmean√

2σM
(4.15)

Finally, the normalisation coefficient is:

C = 2
√

2π3/2σM

∫ rlim

0

erfc (χ) r2 dr (4.16)

Therefore substituting this into the original Likelihood function in Eq. 4.7,
one obtains:

lnL(θ) =
n∑
i=1

ln

(
e
−0.5

(
Mi−Mmean

σMg

)2

r2
i cosbiC−1S(x)

)
(4.17)

The selection function S is by definition 1 for all xi, because for the stars exist
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within the catalogue they must be brighter than the limiting magnitude.

lnL(θ) =
n∑
i=1

ln

(
e
−0.5

(
Mi−Mmean

σMg

)2

r2
i cosbiC−1

)
(4.18)

This is the function which is maximised to find the ML estimation of the
parameters Mmean and σM , the mean and variance of the magnitude of the
population.

4.4 Exponential disk population

Clearly a uniform spatial distribution an over simplification and is only a
reasonable assumption for nearby stars. The next step is to introduce a more
realistic pdf for the spatial distribution. In this case an exponential disk is
chosen:

ϕ$ = e
−|rsinb|
Z0 r2cosb (4.19)

where b is the galactic latitude, and Z is the scale height of the Galaxy. This
function is implemented in place of the previous spatial distribution for the
uniform case. With the same reasoning as in the previous case, upper limits
are introduced to the distance, which provides a limit to the distribution but
is large enough not to effect the distribution of the parameters of the sample
(after the truncation in absolute magnitude).

Normalisation constant

Following the same method for the derivation of the normilisation constant as
in Sect. 4.3.1:

C =

∫
∀x
ϕM(m)ϕ$(r, l, b)S(x) (4.20)
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C =

∫ rlim

0

∫ π/2

−π/2

∫ 2π

0

∫ Mlim

−∞
e
−0.5

(
M−Mmean

σM

)2

e
−|rsinb|
Z0 r2cosb dM dl db dr (4.21)

C =

∫ rlim

0

∫ π/2

−π/2

∫ 2π

0

√
π

2
σMgerfc (−χ) e

−|rsinb|
Z0 r2cosb dl db dr (4.22)

C = 2
√

2π3/2σMgZ0

∫ rlim

0

erfc (−χ)
(

1− e
−r
Z0

)
r dr (4.23)

The error function with χ remains inside the integral because M is dependent
on r. This integral will be solved numerically.

Putting everything together we have:

lnL(θ) =
n∑
i=1

ln
(
e
−0.5

(
M−Mmean

σM

)2

e
−|rsinb|
Z0 r2cosb C−1

)
(4.24)

This highlights the fact that the user is free to choose the distribution which
best suits the problem at hand. The distribution must accurately reflect the
physical nature of the system being modelled, and the model can increase
significantly in complexity in an attempt to model very detailed aspects of a
system. In this example we have swiftly moved from a uniform distribution
for the solar neighbourhood to a exponential disk, but it would be possible to
extend the model to include the different galactic populations such as the thin
and thick disk, the halo, and the bulge. Further detail such as spiral arms can
be included if needed.

4.5 Inclusion of observational errors

Up to this point the Maximum Likelihood equations have been formulated
for a set of observables, x = ($, l, b,m). However, in reality these values are
not known. Instead we have measurements of these parameters, which are
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susceptible to various observational errors. To define x0 = ($0, l0, b0,m0) as
the ‘real’, exact values of the parameters, we then have x = ($, l, b,m) as the
measured value of each quantity (including measurement error).

In many cases, errors in l, b and mg can be treated as negligible, as their
measurement error is generally small in comparison to that of the parallax,
and will not have a significant effect on the results. Therefore the distribution
of these parameters can effectively be described by a Dirac delta function.

The measured value of the parallax $ can be well described by a Gaussian
distribution around the true value $0, with some dispersion ε$ given by the
formal error on the measurement. Therefore the distribution in errors can be
written as:

E(x|x0) = e
−0.5

(
$−1/r0
ε$

)2

δ(l0, b0,m0) (4.25)

remembering that $0 and 1/r0 are exactly equivalent. To formulate the Like-
lihood function:

L(θ) =
n∏
i=1

P(xi|θ) (4.26)

where:

P(xi|θ) = C−1S(x)

∫
∀x0

ϕm0(m0)ϕ$($0, l0, b0)E(x|x0) dx0 (4.27)

This step provides a link between a set of observations and the true values
of the observables, which are not known. The observed parallax (and poten-
tially any other error effected quantity) is used directly, with no non-linear
transformations. Non-linear transformations can be applied on the true values
without issue, as in the case of calculating M0. Of course, true values of the
observables are not known, so they must be marginalised through integration.
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Substituting in the various models gives:

P(xi|θ) = C−1S(x)

∫
∀x0

e
−0.5

(
M0−Mmean

σMg

)2

e
−|sinb0|
Z0$0

1

$2
0

cosb0 e
−0.5($−$0

ε$
)
2

δ(l0, b0,m0) dx0

(4.28)
As l0, b0 and m0 are all described by the delta function their integral is known
to be exactly 1 by definition, leaving:

P(xi|θ) = C−1S(x)

∫ ∞
0

e
−0.5

(
M0−Mmean

σM

)2

e
−|sinb|
Z0$0

1

$2
0

cosb e−0.5($−$0
ε$

)
2

d$0

(4.29)
This integration will be performed numerically.

4.5.1 Normalisation coefficient

The normalisation coefficient is calculated using the same method as that in
Sect. 4.3:

C =

∫
∀x0

∫
∀x
ϕm0(m0)ϕ$0($0, l0, b0)S(x)E(x|x0) dx dx0 (4.30)

Here the integration is simplified by defining the temporary variable I such
that:

C =

∫
∀x0

ϕm0(m0)ϕ$0(π0, l0, b0)

∫
∀x
S(x)E(x|x0) dx︸ ︷︷ ︸

I

dx0 (4.31)

I =

∫
∀x

Θ(m−mlim)e−0.5($−$0
ε$

)
2

δ(l0, b0,mg0) dx (4.32)

The delta function of (l, b,m) integrates to 1 by definition. Additionally, be-
cause the parallax $ is a measured quantity which is $0 plus or minus some
Gaussian error, the possible values of $ are theoretically positive as well as
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negative. Therefore the limits of the integration are −∞ to +∞:

I =

∫ ∞
−∞

Θ(m−mlim)e−0.5($−$0
ε$

)
2

d$ (4.33)

For any fixed absolute magnitude, the apparent magnitude limit is equiva-
lent to a limit in the observable distance, or parallax, such that Θ(m−mlim) =

Θ($lim −$) with: $lim = 10−
mlim−M+5

5 Therefore:

I =

∫ ∞
−∞

Θ($lim −$)e−0.5($−$0
ε$

)
2

d$ (4.34)

I =

∫ ∞
$lim

e−0.5($−$0
ε$

)
2

d$ (4.35)

I =

√
π

2
ε$erfc (χ1) (4.36)

where:

χ1 =
10−

mlim−M+5

5 −$0√
2ε$

(4.37)

Substituting this back into C:

C =

∫
∀x0

ϕm0(m0)ϕ$0($0, l0, b0)

√
π

2
ε$erfc (χ1) dx0 (4.38)

C =

√
π

2
ε$

∫ ∞
1/rlim

∫ π/2

−π/2

∫ 2π

0

∫ ∞
−∞

e
−0.5

(
M0−Mmean

σM

)2

e
−|sinb0|
$0Z

1

$2
0

cosb0erfc (χ1) dm0 dl0 db0 d$0

(4.39)

C = 2π

√
π

2
ε$

∫ ∞
1/rlim

1

$2
0

erfc (χ1)

∫ π/2

−π/2
cosb0e

−|sinb0|
$0Z0 db0

∫ ∞
−∞

e
−0.5

(
M0−Mmean

σM

)2

dm0 d$0

(4.40)
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C = 2π

√
π

2
ε$

∫ ∞
1/rlim

1

$2
0

erfc (χ1) 2Z
(

1− e−
1

$0Z0

) 1

$0

√
2πσM d$0 (4.41)

C = 4π2Zε$σM

∫ ∞
1/rlim

1

$3
0

erfc (χ1) 2Z
(

1− e−
1

$0Z0

)
d$0 (4.42)

With the normalisation coefficient derived, every component of the Likeli-
hood function (Eq. 4.26) has been defined. This formulation is the full pre-
scription necessary for Maximum Likelihood Estimation of the absolute mag-
nitude of a population of stars. When combined with a set of observational
data and the numerical methods required for the calculation and optimisation
of the Likelihood function, the Maximum Likelihood estimate of the model
parameters can be obtained. The explicit inclusion of a spatial distribution
takes account of Lutz-Kelker bias, and the inclusion of a selection function
avoids the Malmquist bias. By defining the models in terms of ‘true’ values of
the parameters, and linking these unknown ‘true’ values with the observations
via the error function, we simultaneously take into account the effect of ob-
servational errors and avoid any non-linear transformations on error effected
values (e.g. on the parallax).

This introductory example has made several simplifying assumptions. The
spatial distribution of the population of stars is assumed to be an infinite disk
(Eq. 4.19). It is possible to increase the complexity of this distribution, to
include the various galactic populations (bulge, halo, thin disk, thick disk), or
the spiral arms. The effects of galactic rotation and interstellar extinction can
also be taken into account. This has not been calculated here as it has been
described in detail in Luri (1995).

79



4.6 Conclusions

Here, the basic mathematical formulation for luminosity calibration has been
introduced. This is the core concept which will be utilised in the following
chapters. The rational for the method which has been introduced is that:

• Estimation of derived quantities such as distance and absolute magnitude
is best achieved through statistical inference.

• The properties of the system being analysed should be parametrised,
and modelled by explicitly including the expected distributions of all
parameters.

• The observed data are linked to their true values of via the error function,
which takes into account the precision of the data being used.

• Explicitly including a selection function takes into account the fact that
the data is taken from a magnitude limited sample.

• Integration of the functions should be performed as far as possible, and
numerical methods employed where no analytical solution can be found.
This avoids simplifying assumptions in the mathematics.

Using the mathematical description given here, the estimation of the param-
eters is achieved by using numerical optimisation routines. Classical optimisa-
tion algorithms such as ‘Nelder-Mead’ or ‘Powell’ efficiently allow estimation of
the peak of the posterior PDF, providing the Maximum Likelihood estimate of
the parameters. More advanced methods such as Markov Chain Monte Carlo
provide more information by evaluating the entire PDF. Both methods have
been employed in the following chapters.
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5
Variables, and the Large

Magellanic Cloud

One of the strengths of the MLE method is that it can be applied in a wide
range of situations, simply by adapting the models for the situation at hand.
While the method from Ch. 4 could be useful for calibrating the absolute
magnitude of different star populations in the Gaia catalogue, there are many
other applications which can prove useful. In this chapter we look at two
fundamental parts of the distance ladder: variable stars as standard candles,
and the distance to the Large Magellanic Cloud (LMC).

In Sect. 5.1 we revisit the MLE method introduced in the last chapter and
extend it to the calibration of a period-luminosity (PL) or period-luminosity-
metallicity (PLZ) relation. The method uses position, parallax, period and
apparent magnitude in order to fit the slope and zero point of a PL relation,
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and will therefore be useful when applied to Gaia data for Milky Way variable
stars such as Cepheids. As Gaia parallax data is not yet available, we derive
a method which is applicable in the absence of parallax information in Sect.
5.2. In Sect. 5.3 we apply this method to real data for calibration of RR-Lyrae
stars in the LMC.

The Magellanic Clouds are a key step in the distance ladder, and are the
first point in the calibration of the extragalactic distance scale. In Sect. 5.4 we
derive a method for the estimation of the distance to the LMC using trigono-
metric parallax data. The distance to the LMC is often used to calibrate
the the zero points of absolute PL and PLZ relations, therefore we test the
capabilities of Gaia in calibrating these relations for LMC variables in Sect.
5.5.

5.1 The Galactic PL relation

Extending the formulation of Ch. 4 to the calibration of variable stars has
been performed for the example case of Cepheid variable stars. However the
method is applicable to any type of variable star which follows a quantifiable
relationship in its absolute magnitude. The assumed linear period-luminosity
(PL) relation is easily interchangeable with a period-luminosity-metallicity
(PLZ) relation, or a non-linear relation.

Due to the fact that Gaia is constantly rotating and observing the sky re-
peatedly over its five year mission, Gaia will provide on average 80 observations
per star. This makes the Gaia transit data useful for characterising stellar
variability, and the end-of-mission catalogue will contain flags for variability
with information on period. As shown in Sect. 3.2.3 for the GOG catalogue,
Gaia is expected to observe several million variable stars, including standard
candles such as thousands of Cepheid variable stars and tens of thousands of
RR-Lyrae. Additionally, the Gaia catalogue will contain an estimate of the
interstellar extinction. Combining the variability period with the apparent
magnitude, position, parallax, and extinction, it will be possible to calibrate
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the absolute PL relation, including the zero point, with an unprecedented
precision by using the Gaia data.

Figure 3.23 shows the parallax error for Cepheid and RR-Lyrae stars. For
Cepheids, it is clear that the vast majority of stars will have very high precision
due to their extreme brightness. RR-Lyraes are generally older and fainter,
and for this reason the majority of galactic RR-Lyraes are expected to have
precision ranging from around 50 to 300 µas. Although with lower precision,
RR-Lyrae stars are expected to be around a factor of 10 more numerous than
Cepehids, making both variable types very promising candidates for precise
calibration with Gaia data.

5.1.1 Likelihood function

As in previous sections, the Likelihood function can be defined as:

L(θ) =
n∏
i=1

P(xi|θ) (5.1)

where the joint density function is made up of the unnormalised density func-
tion and a normalisation constant such that:

P(xi|θ) = C−1D(x|θ) (5.2)

The vector (x = m, l, b, P,$) describes the observed properties of each
object (where P is the period), and (x0 = m0, l0, b0, P0, r0) describes the ‘true’
underlying object properties.

Defining a model for the distribution in absolute magnitude, ϕM , position,
ϕr,l,b, and variability period, ϕP , the unnormalised density function becomes:

D(x|θ) = S(x)

∫
∀x0

ϕM0ϕ$0,l0,b0ϕPE(x|x0) dx0 (5.3)

We assume that the absolute magnitude of the star is Normally distributed
around some mean magnitude. Assuming that the star follows a period lu-
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minosity relation of the form M = ρlogP + δ, the expected distribution of
absolute magnitude is given by:

ϕM = e
−0.5

(
M−Mmean

σPL

)2

= e
−0.5

(
M−(ρlogP+δ)

σPL

)2

(5.4)

where σPL is the intrinsic dispersion of the PL relation. The parameters ρ
and δ are the slope and zero point of the PL relation, which are to be found.
Similarly to Sect. 4.4, the spatial distribution ϕr,l,b, is assumed to be an
exponential disk:

ϕr,l,b = e
−|rsinb|
Z0 r2cosb (5.5)

Additionally, we approximate the period distribution, ϕP , for the population
of Cepheids as being Normally distributed around some mean period:

ϕP = e
−0.5

(
P−Pmean

σP

)2

(5.6)

The above choices are reasonable approximations but can easily be improved
by simply substituting in a different distribution. Finally, the error distribution
for observed quantities is given by:

E(x|x0) = e−0.5($−$0
ε$

)
2

δ(l0, b0,mg0, P0) (5.7)

As l0, b0, m0 and P0 are all described by the delta function their integral is
known to be exactly 1 by definition, the only remaining integral is in r0:

D(x|θ) =

∫ ∞
0

ϕM0ϕ$0,l0,b0ϕPE(x|x0) dr0 (5.8)

This integration will be performed numerically. The final free-fit parameters
are therefore the slope and zero point of the PL relation, and the scale height
of the Galaxy: θ = (α, ρ, Z).
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5.1.2 Normalisation constant

The normalisation constant is found by integrating the joint probability density
function over all (x = m, l, b, P,$):

C =

∫
∀x0

∫
∀x
ϕMg0ϕ$0,l0,b0ϕP0S(x)E(x|x0) dx dx0 (5.9)

Here the integration is simplified by defining the temporary variable I such
that:

C =

∫
∀x0

ϕMg0ϕ$0,l0,b0ϕP0

∫
∀x
S(x)E(x|x0) dx︸ ︷︷ ︸

I

dx0 (5.10)

I =

∫
∀x

Θ(m−mlim)e−0.5($−$0
ε$

)
2

δ(l0, b0,mg0, P0) dx (5.11)

As the delta function of (l, b,m, P ) integrates to 1 by definition, this term
can be removed. Because the observed parallax $ is a measured quantity
which is the true parallax $0 plus or minus some Gaussian error, its possible
values are theoretically positive as well as negative. Therefore the limits of
the integration are −∞ to +∞:

I =

∫ ∞
−∞

Θ(m−mlim)e−0.5($−$0
ε$

)
2

d$ (5.12)

I = Θ(m−mlim)

√
π

2
ε$ (5.13)

Therefore substituting I back into Eqn. 5.10:

C =

√
π

2

∫
∀x0

Θ(m−mlim)ϕMg0ϕ$0,l0,b0ϕP0ε$ dx0 (5.14)

The remaining integral over all x can be performed for each variable in steps.
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Integrating with respect to l0 and b0 gives:

C =

√
π

2
4πZ

∫
∀m0,P0,r0

Θ(m−mlim)ϕMg0ϕP0

(
1− e− r0Z

)
r0ε$ dm0 dP0 dr0

(5.15)
Integrating with respect to m0 gives:

C = 2
√

2π3/2ε$Z

∫
∀P0,r0

ϕP0

(
1− e− r0Z

)
r0

∫
∀m0

Θ(m−mlim)ϕMg0 dm0 dP0 dr0

(5.16)

C = 2
√

2π3/2ε$Z

∫ ∞
0

∫ ∞
0

ϕP0

(
1− e− r0Z

)
r0

∫ mlim

−∞
ϕMg0 dm0 dP0 dr0 (5.17)

χ =
mlim − 5log(r0) + 5− (ρlogP0 + δ)√

2σPL
(5.18)

C = 2
√

2π3/2σPLε$Z

∫ ∞
0

∫ ∞
0

ϕP0

(
1− e− r0Z

)
r0erfc (χ) dP0 dr0 (5.19)

The remaining double integral will be performed numerically. The model
parameters to be fit are therefore: the slope, zero point, and intrinsic dispersion
of the PL relation (ρ, δ, σPL); the scale height of the Galaxy (Z); and the mean
and dispersion of the period distribution (Pmean, σP ).

5.2 Fitting when no parallax data is available

In the near future, before the full release of the final Gaia catalogue, it is still
useful to attempt to improve on the calibration of the PL and PLZ relations
for variable stars. Even after the Gaia parallax data is made available, in
distant objects such as the LMC the relative parallax precision will be low,
often in the order of σ$/$ = 1−10 (see Fig. 5.1). In such cases, it is useful to
calibrate the apparent PL or PLZ relations, without the use of parallax data.
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Figure 5.1: Histogram of relative parallax error σ$/$ for GOG simulated RR-Lyrae stars
in the LMC. Synthetic catalogue generated from OGLE-III and EROS-II survey data.

This is in theory much more straightforward, as it is essentially just fitting a
line to (x, y), or (x, y, z) data.

Fitting a line to data is a common exercise in science. Most common ap-
proaches use Minimum-Least-Squares methods, however these are often based
on assumptions which do not always hold for real observational data. The
most basic methods assume that data are drawn from a perfect straight line,
and that errors are Gaussian, perfectly known, and exist in one axis only.

In the example case of fitting the RR-Lyrae PLZ relation, it is clear that
we have significant errors in at least two axis, and that there can be substan-
tial intrinsic dispersion around the relation due to other, un-modelled effects.
Therefore an attempt has been made to model the data, using a Bayesian ap-
proach to fitting a line in three dimensions which will take into account these
effects correctly. The method was introduced by Hogg. et. al. 2010, but has
been extended for use in three dimensions here.
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5.2.1 Basic approach

Initially, we model the data as being drawn from a plane defined by:

z = f(x, y) = Ax+B y + C (5.20)

where A is the slope in the x axis, B the slope in the y axis, and C is the
intercept. In this initial model we assume that we have data in three axis, x,
y and z, with errors only in the z axis.

In this model, given an independent position (xi,yi), an uncertainty σzi, a
slope A,B, and an intercept C, the frequency distribution p(zi|xi, yi, σzi,m, b)
for zi is

p(zi|xi, yi, σzi,m, b) =
1√

2 π σ2
zi

exp

(
− [zi − Axi −B yi − C]2

2σ2
zi

)
(5.21)

We therefore define the Likelihood as:

L =
N∏
i=1

p(zi|xi, yi, σzi,m, b) (5.22)

Taking the logarithm,

ln L = K −
N∑
i=1

[zi − Axi −B yi − C]2

2σ2
zi

= K − 1

2
χ2 (5.23)

which is effectively the least-squares solution. K is a constant. Returning to
Bayes rule it is possible to define:

p(A,B,C|{zi}Ni=1, I) =
p({zi}Ni=1|A,B,C, I) p(A,B,C|I)

p({zi}Ni=1|I)
(5.24)

{zi}Ni=1 is all the data zi, I is a all of the knowledge of xi, yi and the σzi, plus
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any other prior information we may have.

5.2.2 Multiple errors, no dispersion

However, in our case we have errors in more than one axis, so these can be
put together into a covariance matrix Si

Si ≡

 σ2
xi σxyi σxzi

σxyi σ2
yi σyzi

σxzi σyzi σ2
zi

 (5.25)

With errors in several dimensions, our observed data point (xi,yi,zi) could
have been drawn from any true point along the plane (x,y,z). Making the
probability of the data, given the model and the true position:

p(xi, yi, zi|Si, x, y, z) =
1

2 π
√

det(Si)
exp

(
−1

2
[Zi −Z]> Si

−1 [Zi −Z]

)
(5.26)

where we have implicitly made column vectors

Z =

 x

y

z

 ; Zi =

 xi

yi

zi

 (5.27)

In only two dimensions (e.g. y and z), the slope (e.g. B) can be described
by a unit vector v̂ orthogonal to the line or linear relation (at any x):

v̂ =
1√

1 +B2

[
−B
1

]
=

[
− sin θ

cos θ

]
(5.28)

where we have defined the angle θ = arctanB made between the line and the
y axis. The orthogonal displacement ∆i of each data point (yi, zi) from the
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line is given by

∆i = v̂>

[
yi

zi

]
− C cos θ (5.29)

Instead of extending fully into three dimensions, we will assume a negligible
error in x (which will be the period, so has justifiably higher precision). x can
be directly input into ∆i without worrying about the interplay between the
other parameters.

∆i = v̂>

[
yi

zi

]
− (C cos θ + Axi) (5.30)

Assuming negligable errors in x also redefines the covariance matrix of the
errors as:

Si ≡
[
σ2
yi σyzi

σyzi σ2
zi

]
(5.31)

Similarly, each data point’s covariance matrix Si projects down to an or-
thogonal variance Σ2

i given by

Σ2
i = v̂> Si v̂ (5.32)

and then the log Likelihood for (A,B,C) or (A, θ, C cos θ) can be written as

ln L = K −
N∑
i=1

∆2
i

2 Σ2
i

(5.33)

where K is some constant. This Likelihood can be maximized to find A, B
and C.

5.2.3 Intrinsic dispersion

The final step is to introduce an intrinsic variance in the line, V, orthogonal
to the line.
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According to Hogg 2010, each data point can be treated as being drawn
from a projected distribution function that is a convolution of the projected
uncertainty Gaussian, of variance Σ2

i defined above, with the intrinsic scatter
Gaussian of variance V . Therefore the Likelihood becomes:

ln L = K −
N∑
i=1

1

2
ln(Σ2

i + V )−
N∑
i=1

∆2
i

2 [Σ2
i + V ]

(5.34)

where again K is a constant, everything else is defined as above.

5.3 The RR-Lyrae PLZ relation

The method from Sect. 5.2 has been implemented as a line-fitting package,
and accepts a set of input data (x, y, z, σy, σz), using MCMC (Foreman-
Mackey et al., 2013) to sample the posterior PDF of the four parameters (A,
B, C, V ). The method provides the MAP estimates for the model parameters,
the formal error on the estimates, and the full posterior PDF. The method
has been tested extensively using simulations. The method has been used in
collaboration with the INAF-University of Bologna team (G. Clementini, T.
Muraveva) to calibrate the RR-Lyrae PLZ relation for a catalogue of 71 RR-
Lyrae stars in the LMC, with spectroscopically determined metallicity, precise
periods from the third Optical Gravitational Lensing Experiment (OGLE III)
catalogue (Udalski et al., 2008) and multi-epochKs photometry from the Vista
for Magelanic Clouds (VMC) survey (Cioni et al., 2011). Ks photometry has
been used because it is in the infrared that RR-Lyrae stars exhibit a tight
PLZ relation. Additionally, the effect of interstellar extinction is weaker in the
infrared passbands, and therefore the effects of differential reddening along the
depth of the LMC are reduced. The LMC is an excellent location to study
variable stars because they can often be assumed to be at the same distance.
For study of variable stars in the Galaxy, the distance to each individual star
must be known in order to meaningfully compare the magnitudes of the stars,
and for this reason calibration of PL relations can be more difficult to achieve.
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The results of the application of the method are detailed in an article which
is under preparation: A new Period-Luminosity-Metallicity relation for
RR Lyrae stars and the impact of Gaia. Muraveva, T.; Palmer, M.;
Clementini, G.; Luri, X.; et. al. Article in preparation.

In order to calibrate the PLKsZ relation a large sample of RR Lyraes is
required, which span a wide range of metallicities and for which accurate Ks

and [Fe/H] measurements are available. We selected the 71 RR Lyraes in
the Large Magellanic Cloud (LMC) which have spectroscopically determined
metallicities in the range [-2.06; -0.63] dex (Gratton et al., 2004). All these RR
Lyraes have counterparts in the OGLE III catalogue (Soszyński et al., 2009),
therefore very precise periods are available. In order to increase the accuracy
of the determination of the mean Ks magnitudes, multi-epoch photometry
is needed. For this reason we are using the data of the near-infrared Vista
for Magellanic Clouds (VMC) survey, which performs Ks observations in 12
epochs. Many previous studies use single-epoch photometry from the Two
Micron All-Sky Survey (2MASS, Cutri et al. (2003)). To fit the PLKsZ relation
we apply the Bayesian model fitting approach from Sect. 5.2.

By applying this method we found the following relation between periods
of pulsation, metallicities and mean apparent Ks magnitudes determined with
templates1:

Ks,0 = (−2.70± 0.22)logP + (0.03± 0.06)[Fe/H]

+ (17.44± 0.05) (5.35)

Note that the actual fitting was for a function of the form: z = f(x, y) =

A (x+0.25)+B (y+1.5)+C in order to avoid a strong correlation between the
gradients and zero point. The data was shifted by 0.25 in period and 1.5 in

1Note that this work is still in progress and the selection of stars may be modified in the
near future. For the full list of selected RR-Lyraes and the final PLZ relation, please refer
to Muraveva et. al (in prep).
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metallicity to give a zero point more or less central to the data, and after the
fitting procedure both the data and fit are returned to the initial configuration.

The intrinsic dispersion of the relation is found to be 0.09 mag. The RMS
deviation of the data around the relation, neglecting the intrinsic dispersion,
is 0.09 mag. The resulting fit and posterior PDF of the parameters are shown
in Figs. 5.2 and 5.3. The projections of the PLKsZ relation (Eqn. 5.35) on
the log(P )−Ks and Ks− [Fe/H] planes is shown in Figure 5.2. The grey lines
in the figure are lines of equal metallicity (top) or equal period (bottom). For
a clear representation of the scatter of the points around the relation, fig. 5.4
shows the relation in three dimensions.

It is worth noting that we find a very small (effectively zero) dependence of
the Ks magnitude on the metallicity.

5.4 The distance to the Large Magellanic Cloud

As mentioned in Sect. 5.2, the LMC is an excellent object for study of variable
stars. In fact, observation of the population of variable stars in the LMC was
responsible for the initial discovery of a PL relation by Leavitt (1908). The
relatively short depth of the LMC allows the approximation that all of the
stars are at the same distance, meaning that calibration of the apparent PL or
PLZ relation is possible with no distance information whatsoever (as seen in
Sect. 5.3). An absolute relation would give information on the luminosity of
the stars, aiding work on pulsation mechanisms and stellar evolution theory,
and would additionally allow direct comparison between LMC variables and
those within the Milky Way. To calibrate an absolute relation, distance mea-
surements are required for the individual variable stars involved, or globally
for the entire system.

Gaia will for the first time provide a statistically significant sample of mea-
surements of absolute trigonometric parallax for stars within the Magellanic
Clouds, and for this reason could provide an excellent tool for constraint of
their distances. This would allow direct calibration of absolute relations for
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Figure 5.2: Triangle plot showing the posterior PDF of the parameters, along with correla-
tions between each pair of parameters.
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Figure 5.3: Projections of the PLKs relation on the log(P )-Ks (top panel) and [Fe/H]-
Ks (bottom panel) planes. Grey lines represent lines of equal metallicities (top panel) and
periods (bottom panel) intersecting each star.
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Figure 5.4: The PLZ relation in three dimensions, showing the plane of the fitted relation
and the dispersion of the stars around it.
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variable stars within the LMC. Additionally, a precise estimate for the distance
to the LMC would allow calibration of several other distance indicators, and
an improvement in the calibration of the extragalactic distance scale.

In this section we define a method for estimation of the distance to the
LMC, and test it using simulated Gaia data. In the following section we look
at the calibration of the distances to individual variable stars for the cases of
Cepheids and RR-Lyraes and the potential impact for the calibration of their
respective PL relations.

5.4.1 Distance estimation with Gaia

Given the very large distance to stars in the Magellanic Clouds, determination
of their distances is one of the most extreme use cases for Gaia parallaxes.
Gaia is expected to observe several million stars in the LMC, however the
distances involved are such that the error in parallax will be in most cases
many times larger than the parallax itself.

To test Gaia’s capability in obtaining a distance estimate to the LMC, sim-
ulated Gaia data has been generated using GOG. Synthetic catalogue data for
the LMC is obtained from a photometric catalogue (Belcheva private commu-
nication, as indicated in GAIA-C2-TN-LAOB-AR-004-10), and so is a realis-
tic catalogue of stars which Gaia will be capable of observing. The synthetic
catalogue is processed using GOG, which contains a full mathematical de-
scription of the nominal performance of the Gaia mission, in order to produce
simulated Gaia end-of-mission catalogue data including realistic observational
errors. The sky density of the simulated stars in the region of the LMC can
be seen in Fig. 5.5.

GOG uses an input catalogue of roughly 7.5 million LMC stars which are
brighter than G = 20 mag. Position, apparent magnitude and colour infor-
mation is obtained from the photometric catalogue on which the simulation
is based. A mean LMC distance of 48 kpc (or a mean parallax of 20.83 µas)
from Macri et al. (2006) is assumed, and stars are simulated with a Gaussian
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Figure 5.5: Sky density map of the GOG simulated stars in the LMC.

distribution around the mean with a standard deviation of 750 pc, following
Sakai et al. (2000). After simulation of Gaia observations of LMC stars using
GOG, the distribution of relative parallax error in the GOG simulated Gaia
data is shown in Fig. 5.6. With the precision of Gaia’s astrometric measure-
ments around 10 µas for the brightest stars and dropping to a few hundred
µas at the faint limit, it is clear that the majority of stars will be individually
very poorly determined.

5.4.2 Method

Taking the mean of all parallax measurements could theoretically provide a
mean parallax with a precision of around 0.25 µas, taking into account the
individual parallax errors and the scaling of the precision with 1/

√
N , where

N is the number of stars. However, the direct calculation of the mean parallax
is susceptible to several of the biases highlighted in Sect. 2.
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Figure 5.6: Histogram of the relative error in parallax (σ$/$) for all of the 7.5 million
GOG simulated stars in the LMC.

99



The situation is improved by explicitly modelling the true parallax distribu-
tion and fitting the mean distance and dispersion as parameters. We assume
a Gaussian distribution around some mean distance, dmean with dispersion,
σd. We label the parameters as the vector θ = (dmean, σd), and the set of
observations as the vector x = [($, ε$)1, ($, ε$)2, ..., ($, ε$)N ].

We can therefore define the Likelihood of our parameters θ, given a set of
observations x:

L(θ|x) =
N∏
i=1

1√
2πσd

e
0.5

(
dr,i−dmean

σd

)2

1√
2πεi

e
0.5

(
$i−1/dr,i

εi

)2

(5.36)

Or equivalently taking the log Likelihood as:

lnL(θ|x) =
N∑
i=1

ln
(

1

2πσdεi

)
− 0.5

((
dr,i − dmean

σd

)2

+

(
$i − 1/dr,i

εi

)2
)

(5.37)
Here, dr,i is the real distance to star i. This can be fit as a parameter,

to obtain the a posteriori estimate of the distance to an individual star, or
marginalised through integration.

The log Likelihood function as defined above has several advantages in terms
of estimating a mean distance: observational errors are taken into account; the
explicit inclusion of a distance distribution and non-truncation of the observed
parallax avoids the Lutz-Kelker bias; the observed parallax is used directly so
there are no non-linear transformations in the equations which can bias the
result. As the model relies only on trigonometric parallax, there is no need for
external assumptions or corrections due to effects such as reddening.

Using Bayes theorem to define the log Likelihood function, we find the
Maximum A Posteriori Probability (MAP) estimate of the parameters of our
model by maximising:

θMAP(x) = lnL(x|θ)g(θ) (5.38)
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where the function g(θ) is our prior PDF. We have assumed wide priors.
This method has been implemented using an adaptive Markov Chain Monte

Carlo (MCMC) sampler (Foreman-Mackey et al., 2013) to construct the poste-
rior probability density function (PDF) of the parameters. The method returns
the Maximum A Posteriori Probability (MAP) estimate of the parameters, the
formal error, and the complete posterior PDF.

The MCMC sampler performs a semi-random walk in the parameter space
in order to evaluate the PDF in regions of non-negligible probability in an
efficient way. The type of MCMC algorithm used here is the Goodman and
Weare Affine Invariant MCMC Ensemble sampler, which allows numerous si-
multaneous Markov chains, called walkers, which start at some range of initial
guesses and move with a semi-random walk with preference towards regions
of higher probability. The sum of all of the positions of all of the walkers over
this time gives the sampling of the PDF of the parameters. The initial few
steps, before the system has reached a state of equilibrium, is called the burn
in period. These steps will not be included in the final sample as they are
affected by the initial guess.

The method has been tested using the simulated GOG data for the bright-
est 700 stars, without correlated errors (see Ch. 7 for a discussion of error
correlations in Gaia), and recovers the mean distance of the LMC to within
0.2 kpc, or 0.4%, of the true value. The mean distance is estimated to be
R = 48.19+0.45

−0.44 kpc (Rtrue = 48.0), with a variance around the mean position
of σR = 2.12+0.93

−0.70 kpc (σRtrue = 0.750). The posterior PDF of the parameters
obtained using MCMC is shown in Fig. 5.7.

One of the key strengths of the use of MCMC is the possibility of recon-
structing the entire posterior PDF. In Fig. 5.7 we can see that the PDF of the
intrinsic dispersion σR is highly asymmetric. Additionally there is a visible
correlation between the distance and the dispersion. This slight correlation
is expected, as the expected size of the LMC should increase if the distance
parameter is overestimated.

This case study highlights the possibility of fitting mean parallaxes to a much
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greater precision than that of the individual stars in the sample. However, error
correlations (see Ch. 7) may play a role in limiting the maximum achievable
accuracy if the stars used are concentrated in a small area on the sky.

5.4.3 The orientation of the LMC

As a brief aside, we will look at the application of this method to determine
the orientation of the LMC disk. The LMC is widely known to be slightly
tilted with respect to the viewing angle on the plane of the sky. Inclination
angles of 35.8◦ ± 2.4◦ (Olsen & Salyk, 2002) and 32◦ ± 4◦ (Haschke et al.,
2012) have been reported, although a new analysis of LMC RR-Lyrae stars
finds an inclination angle of only 11.84◦ ± 0.8◦ (Klein et al., 2014), in strong
disagreement with previous studies. Methods for determining the tilt angle
of the LMC rely on distance indicators such as Cepheids, RR-Lyraes or red
clump stars, and are therefore dependent on the calibration of these distance
indicators, and other important effects such as interstellar extinction.

The method from Sect. 5.4.2 estimates the mean distance to the LMC
directly using trigonometric parallax. While it would be possible to model the
3D structure of the LMC disk in order to fit its angle and orientation, a more
straight forward approach is possible. By simply splitting up the LMC stars
into a grid on the sky, it is possible to obtain an estimate of the mean distance
to each grid cell.

To test this approach the distances of the GOG LMC input catalogue were
modified to include a tilt angle of 35◦ (for simplicity the line of nodes was
chosen parallel with the galactic longitude, l). The results of the estimation of
the distance to a grid imposed over the LMC area are shown in Fig. 5.8. The
colour scale shows the relative difference between the global mean distance and
the distance estimated for each grid cell. From the figure it is clear that the line
of nodes (parallel with galactic longitude for convinence) has been accurately
obtained. Taking a 3◦ angular scale at a distance of 48 kpc provides a size
perpendicular to the plane of the sky of 2.5 kpc. Over 3◦ in either direction

102



[ht!]

Figure 5.7: Triangle plot of the results of the MCMC sampling of the Likelihood function.
Histograms are the posterior PDF of: the mean LMC distance (R), the depth of the LMC
(R, ×64 to give same magnitude to each parameter in the minimisation). Also shown is
the correlation between each pair of parameters. The blue lines represent the true value,
included in the initial simulation.
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Figure 5.8: Points show the centre of each cell of a grid covering the LMC area. The size
and orientation of the grid is arbitrary and chosen to allow a reasonable number of stars
per cell. The colour scale represents the residual of the global mean distance and the mean
distance of stars within a cell dmean − dcell. Using the angular size and the distance to the
LMC, the residual difference corresponds to an observed tilt angle of 37◦. The contour plot
and colour fill is the smoothed residual extrapolated over the entire area.

from the line of nodes there is a distance residual of around 2 kpc (see Fig.
5.8), which translates to a tilt angle of 37◦. Before performing a more rigorous
analysis, we direct the reader to Sect. 7.4 on error correlation effects on Gaia
LMC data.

5.5 Variables in the Large Magellanic Cloud

Included within the large number of stars which Gaia will observe in the Magel-
lanic Clouds will be a significant population of variable objects. Variable stars
have a long history of use in luminosity calibration and the distance scale,
due to their potential use in calibration as standard candles and though rela-
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tions between the absolute magnitude of a star to observables such as period,
metallicity or colour.

Study of variable stars in the LMC is ongoing. Because observables such
as period are measurable at kpc distances, stars in the Magellanic Clouds
are easily accessible, and well calibrated relations can serve as a excellent
tool for distance determination to the Milky Way’s satellite galaxies and in
the extra-galactic distance scale (Kanbur et al., 2003). Calibration of the
relations is still being undertaken, either for absolute relations such as those
by Gieren et al. (1998), or by extrapolating Galactic relations out to LMC
variables which can then be used to determine the LMC distance (e.g. Clement
et al., 2008). One major problem in this extrapolation of relations is the
possibility of there being a dependence on age or metallicity which would
result in different relations applying for different galaxies (Storm et al., 2011).
This is of particular concern for the LMC which is much more metal poor
than the Milky Way. It can therefore be useful to provide a calibration for the
absolute luminosity of LMC variable stars and their relations by direct means,
rather than relying on relations calibrated within the Milky Way.

In order to test the potential of Gaia in LMC variable star calibration it
is first important to get an idea of the numbers and types of variables which
will be observed. Two recent surveys of the LMC, the Optical Gravitational
Lensing Experement (OGLE) (Udalski et al., 2008) and The Expérience pourla
Recherched ’Objets Sombres (EROS) (Tisserand et al., 2007), have produced
catalogues of both Cepheid variable stars and RR-Lyrae stars in the LMC.

EROS is a microlensing experiment, and due to its sampling period was very
useful for detecting periodic variable stars and sampling their light curves.
Work has been performed in order to characterise the different variable types
contained within the EROS data, finding 6607 RR Lyraes, 638 Classical Cepheids,
and 178 Type II Cepheids (Kim et al., 2014).

OGLE is another gravitational lensing experiment, which in the OGLE-
III data release provided a catalogue of variable stars in the LMC with very
good coverage over the LMC area. The catalogue contains classification of
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3361 classical Cepheids (Soszyński et al., 2008) and 24906 RR Lyrae stars
(Soszyński et al., 2009). The OGLE-III catalogue contains more variable stars
due to covering the outer regions of the LMC, well beyond the main disk.

Work has been undertaken to use these stars to calibrate the PL, PLZ, or
PLC relations (e.g. Udalski et al., 1999b), yet for the zero point it is always
necessary to rely on external distance estimates for the mean distance to the
LMC.

The recent VISTA near-infrared Magellanic Cloud survey has combined the
OGLE-III and EROS variabe star data with multi-epoch photometry in Y ,
J , and KS bands with sampling specifically selected for the lightcurves of RR
Lyrae and Cepheids with periods up to 30 days. To test Gaia’s capability in the
calibration of the Cepheid and RR Lyrae PL relation in the LMC, synthetic
catalogues of both types of variables have been created from this combined
catalogue.

The photometric catalogue provides a complete list of Cepheids in the LMC,
including positions, apparent magnitude in V and I, pulsation period, and
pulsation mode (fundamental, 1st overtone, etc.). Lacking from the input
information is the distance, which is required in order to simulate the parallax
observations.

The OGLE-III catalogue is used here due to its use of the Johnson V and
I bands, and the internal classification of pulsation mode. As can be seen in
Fig. 5.9, the survey area covers the majority of the LMC. All 1831 of the
fundamental pulsating Cepheids in OGLE-III are included in the following
discussion.

The production of the synthetic catalogue is achieved though the following
steps:

• The catalogue provides apparent V and I magnitudes, period and posi-
tion. These are taken to be known ‘perfectly’ with negligible errors.

• The distance is generated randomly using a Gaussian distribution with
mean 48 kpc and variance of 750 pc. This distance is an arbitrary choice,
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Figure 5.9: Density map of the 7.5 million stars simulated by GOG, with the OGLE-III and
EROS Cepheids overlaid as black dots.
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with a reasonable approximation used for the distance and taken from
now to be the ‘true’ distance.

• The absolute V and I magnitudes are obtained from the period using PL
relations for the LMC from Udalski et al. (1999c):

MV = −2.760logP − 1.18 σ = 0.159 (5.39)

MI = −2.962logP − 1.66 σ = 0.109 (5.40)

• The extinction is calculated from the above parameters, using:

Ax = mx + 5− (Mx + 5logd) (5.41)

where x is either V or I, and assuming that the extinction is the only
cause of loss of flux. Given that for a given star the distance and the
dispersion around the PL relation are drawn as random variables, the ex-
tinction is also a random quantity, but statistically will be representative
of the true extinction.

• We therefore have position, period, absolute magnitude in V and I, dis-
tance and extinction in the V band. These quantities are taken to be
the ‘real’ parameters of our catalogue and are processed using the Gaia
Object Generator (GOG) to obtain simulated Gaia observations of each
star, including observational errors. GOG handles the conversions be-
tween Johnson and Gaia bands internally.

5.5.1 Method

GOG provides a catalogue of ‘observed’ stars, including astrometric and photo-
metric information. As can be seen by the distribution in apparent magnitudes
in Fig. 5.10, the magnitudes of the Cepehids in this sample are brighter than
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Figure 5.10: Distribution of apparent magnitues.

G = 17 mag. We can therefore assume that, to a reasonable approximation,
all LMC Cepheids will be observed and there is no limiting magnitude. For
the estimation of distances we apply the same formulation as that of Sect. 5.4.

5.5.2 Application

The MCMCmethod is used to obtain the mean and variance of the distribution
in distances. These values are the median of the posterior distribution, with the
errors obtained from the 15.87 and 84.13 quartiles respectively (representing
1σ assuming that the posterior distributions are Gaussian).

Using all 1831 fundamental mode classical Cepheids, the mean distance to
the LMC is found to be R = 50.96+1.54

−1.30 kpc (Rtrue = 48.0), with a variance
around the mean position of σR = 8.1+2.0

−2.6 kpc (σRtrue = 0.750). Clearly the
determination of the variance of the distribution, which is a measure of the
depth of the LMC, is not accurate, and the very large error bars confirm that
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there is insufficient data to accurately constrain the depth2 of the LMC using
only Cepheid parallax information. The mean distance obtained directly from
the mean of the inverse of the parallax is 111.4 kpc, which serves to reiterate
that the directly calculated mean distance is unreliable due to being susceptible
to various biases. The above estimate of the distance to the LMC is accurate
to roughly 6%.

As there are a total of 7.5 million stars in the entire simulated LMC, there
are many very bright stars with better parallax precision than the stars in
the Cepheid sample. By using the global distance estimate to the LMC given
in Sect. 5.4.1 it is possible to improve on the distance estimate for Cepheid
variable stars alone. However, it is necessary to assume that the distance
distribution of the Cepheid population is the same as that of the general stellar
population.

5.5.3 Recovering the Cepheid P-L relation

In the construction of the synthetic catalogue, the period luminosity relation
assumed from Udalski et al. (1999c) was used, as shown in Fig. 5.11.

GOG is capable of transforming from Johnson bands into Gaia bands, and
so the GOG output is given for Gaia band G as will be in the final Gaia
catalogue. In Fig. 5.11 the fit to the PL relation to the true values (not
affected by observational errors) is shown, for the Gaia band G. It is clear
that the slope and dispersion are largely the same in both bands. This will
be assumed to be the ‘real’ Gaia PL relation and an attempt will be made to
recover this from the observations.

Given the distance estimate of R = 48.19+0.45
−0.44, the absolute magnitude of

the star can be calculated using the method derived for estimating variable
star PL relations in Sect. 5. We will assume that all stars are at the same
distance. This assumption will cause a slight overestimation of the intrinsic

2Note that we approximate the depth of the LMC as a Gaussian distribution in distance.
This could easily be changed to a more complex distribution if required.
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Figure 5.11: Johnson V band (top) and Gaia G band (bottom) period luminosity relation
assumed for LMC fundimental mode classical Cepheids. The blue bands are the 1, 2 and 3
σ dispersion around the PL relation. No observational errors have been applied.



dispersion, due to the differences in apparent magnitude caused by differences
in distance not being taken into account. Using the LMC distance and depth
of 48 kpc and 750 pc from Macri et al. (2006) and Sakai et al. (2000), the
depth of the LMC causes relative differences of only 1.5%. Recent results by
Haschke et al. (2012) specifically for the Cepheid population find a LMC depth
of 1.7± 0.2 pc, with a distance of 53.9± 1.7 pc for the same population. This
corresponds to effects of the depth of the LMC causing relative differences of
only 3%.

Defining a model for the distribution in absolute magnitude

ϕM = e
−0.5

(
M−Mmean

σPL

)2

= e
−0.5

(
M−(ρlogP+δ)

σPL

)2

(5.42)

where σPL is the intrinsic dispersion of the PL relation, and the parameters
ρ and δ are the slope and zero point. Assuming that the uncertainty in the
period is negligible compared with the other parameters, the error distribution
for observed quantities is given by:

E(x|x0) = e
−0.5

(
mg−mg0
εmg

)2

e
−0.5

(
R−R0
εR

)2

e
−0.5

(
Ag−Ag0
εA−g

)2

δ( logP )
(5.43)

Therefore the joint Likelihood function is:

P(x|θ) =
S(x)

C

∫
∀x0

ϕME(x|x0) dx0 (5.44)

where the normalisation coefficient is:

C = 4π2σPLεmεRεAg (5.45)

This integration will be performed numerically. The final free-fit parameters
are therefore the slope, zero point and intrinsic dispersion of the PL relation.
While it would be more complete to fully model the spatial distribution along
with the distribution in absolute magnitude, the precision on the individual
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parallaxes is too low to allow precise fitting of the distance using only Cepheid
parallax measurements, as seen in Sect. 5.5. For this reason it is beneficial to
include the global distance estimate calculated from the inclusion of all of the
stars in the catalogue.

The result of the application of the above method is shown in Fig. 5.12, for
fitting the PL relation for the GOG simulated LMC Cepheid population. In
the simulated data there are 316 stars with negative prallax, making up around
20% of the total, which can not be used to calculate the absolute magnitude
due to having to take the logarithm of a negative number. These data points
do however contain information, and removing them would bias the sample
by including stars for which random measurement errors have scattered the
result in the positive direction rather than negative. This is one benefit of the
method used here, as the parallax can be used directly even if negative. When
plotting the observed PL relation, the stars with negative parallax can not be
included. Additionally the errors bars are asymmetric. It is therefore useful
to define the Astrometric Based Luminosity (ABL, Arenou & Luri (1999)) as:

ABL = 100.2MV = 10
mV +5

5 (5.46)

where mV has been corrected for extinction and the parallax is in arcsec.
Plotting the PL relation using the ABL results in symmetric error bars and
allows the inclusion of negative parallax data, leading to a clearer visualisation
of the resulting fit.

5.6 Conclusions

Here the ML method introduced in Ch. 4 has been extended to calibration
of the Cepheid PL relation. The method has been implemented and is ready
to use when Gaia data becomes available. Currently, there is a severe lack of
parallax measurements for Cepheids and RR-Lyraes. This has made applica-
tion of the method to real data impossible, but highlights the potential use
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Figure 5.12: Top: Observational PL relation with the absolute magnitude calculated from
the observed parallax and apparent magnitude. The 316 stars with negative parallax have
not been included. Bottom: The relationship between the period and the Astrometric Based
Luminosity calculated for all of the observed Cepheids. In both plots, the black circles are
the observed data and the blue crosses are the ‘true’ values. The fit line is that obtained
using the method in Sect. 5.5.3.



for precise calibration of the PL relation when Gaia data becomes available.
With an expected number of Cepheids in the thousands, the method provided
here has the potential to provide a precise and unbiased calibration of both
the slope and zero point of the absolute PL relation. With no statistically sig-
nificant sample of parallax measurements available, a method was developed
for calibration for use without parallax data. This was applied to real data for
RR-Lyraes in the LMC, leading to a new PLZ relation.

With the potential for Gaia to obtain absolute trigonometric parallax mea-
surements for stars in the Magellanic Clouds, the ML method introduced in
Ch. 4 has been adapted for obtaining the distance to the LMC. Testing with
simulated data shows that Gaia will be capable of obtaining the global mean
distance to the LMC to within 0.4%, though there is insufficient information
to constrain specific details about the depth or structure. While information
could theoretically be obtained on the orientation and angle of the tilt of the
disk of the LMC, error correlation effects will likely make detection impossible
(see Ch. 7).

The LMC contains many variables and the sky position of the LMC away
from the disk makes them an ideal candedate for calibration of relations which
can be used out to the extragalactic distance scale. To test the capability of
Gaia in this calibration, the ML method is applied to synthetic catalogues of
Cepheid and RR-Lyrae stars. Cepheids, being bright, will allow a reasonable
distance determination ( 5%), however we find that it is beneficial to estimate
the mean distance to the LMC using the full quantity of available stars. This
allows an excellent precision on the mean distance to the LMC which can then
be used to calibrate the absolute PL relation.
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6
Open clusters

6.1 Introduction

Open clusters have long been used as a testing ground for a large number of
astronomical theories. Determining the distances to nearby open clusters is
critical, since they have historically formed the first step in the calibration
of the distance scale. Because all stars within an open cluster are expected
to have the same age and metallicity, accurate distance estimates are highly
useful in calibrating the main sequence and checking stellar evolutionary theory
through comparison with theoretical isochrones.

Until recently, accurate distances to even the most nearby clusters have
not been possible. The Hipparcos astrometric mission of 1989 (Perryman &
ESA, 1997) for the first time gave accurate parallax measurements for over one
hundred thousand stars and has been used extensively to give direct distance
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measurements to more than 30 open clusters.
Still, many questions remain. While revolutionary in its time, the mil-

liarcsecond astrometry and limiting magnitude (Hp<12.5) of Hipparcos allow
calculating distances to only the nearest open clusters, and even then do so
with a precision no better than a few percent. Owing to the relatively small
size of most open clusters compared with their distances and the precision of
measurements, the Hipparcos data has been unable to give definitive answers
about the internal structure and physical size of such clusters.

Additionally, the release of the Hipparcos catalogue in 1997 has led to some
controversy. The most famous is the case of the Pleiades, where methods
based on Hipparcos data (van Leeuwen & Hansen Ruiz, 1997; Robichon et al.,
1999a; Mermilliod et al., 1997) gave a distance estimate that was some 10%
shorter than works based on photometric methods (Pinsonneault et al., 1998;
Robichon et al., 1999b; Stello & Nissen, 2001) (see Sect. 6.8). Even more
precise results from Melis et al. (2014) are contra Hipparcos based distance
estimates.

With the above in mind, it is apparent that a new method is required that
is capable of squeezing the maximum precision from the currently available
data and is capable of utilising information from the full range of observed
quantities (astrometric, photometric, and kinematic information). This will
be particularly true after the launch of Gaia, which will produce a rich dataset
that will include not only accurate parallax measurements, but also photom-
etry at millimag precision and a full set of kinematics obtained from proper
motions combined with radial velocity measurements from the on-board radial
velocity spectrometer (for stars with GRV S<16).

Maximum Likelihood Estimation (MLE) has been used in relation to open
clusters since 1958, where Vasilevskis et al. (1958) used MLE to perform cluster
membership selection from proper motions.

For the Hyades and Pleiades, Chen and Zhao used a combination of the
convergent point method with MLE in order to simultaneously determine mean
parallax and kinematics for the Hyades (Zhao & Chen, 1994) and later the
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Pleiades (Li & Junliang, 1999). Here, we continue the formulation introduced
in Sect. 4.3.

In Sect. 6.2 the exact mathematical formulation is given. A description of
the observational data used is given in Sect. 6.6, and the results of application
of the method to the Pleiades and Hyades given in Sects. 6.7 and 6.9. The
possible effects of correlated errors in the Hipparcos catalogue are discussed in
Sect. 6.8. The use of the method with Gaia data is tested using simulations in
Sect. 6.10. The contents of this chapter has been published as Palmer et al.
(2014), Astronomy & Astrophysics, Volume 564, 2014, id: A49, 14
pp.

6.2 Mathematical formulation

Definition

The Likelihood function can be defined as

L(θ) =
n∏
i=1

P(xi|θ) (6.1)

where the joint PDF P(xi|θ) is made up of the un-normalised PDF D(xi|θ)

and a normalisation constant Ci, such that

P(xi|θ) = C−1
i D(xi|θ), (6.2)

and θ is the vector giving the parameters of the model.
To model every major aspect of an open cluster, we have chosen that θ =

(R, σR,M(V − I), σM , U, V,W, σUVW ), where R is the distance to the centre
of the cluster assuming a spherical Gaussian distribution, σR the intrinsic
dispersion around the mean distance, M(V − I) the mean absolute magnitude
as a function of colour, σM the intrinsic dispersion around the mean absolute
magnitude, U , V , and W are the three components of the clusters velocity
ellipsoid in galactic Cartesian coordinates, and σUVW is the intrinsic dispersion
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in the clusters velocity.
The vector (x = m, l, b,$, µl, µδ, vr) describes the observed properties of

each star, and (x0 = m0, l0, b0, r0, µα∗,0, µδ0, vr0) is the vector describing the
‘true’ underlying stellar properties unaffected by observational errors.

We can then define the un-normalised1 PDF such that

D(xi|θ) = S(xi)

∫
∀x0

ϕM0ϕrlb0ϕv0E(xi|x0) dx0, (6.3)

where ϕM0 , ϕrlb, ϕv are the PDFs describing the nature of the open cluster,
and S(x) is the selection function, which takes the probability of observing
a star into account, given the properties of the star and the instruments’
observational capabilities. To take the fact that Hipparcos is a magnitude
limited sample into account, a step function is used with

S(x) =

1, if Hp<12.5.

0, otherwise.
(6.4)

The case is more complicated in reality , with Hipparcos only being complete
up to magnitude Hp < 7. At fainter magnitudes, stars were selected using
a number of criteria and used as an input catalogue (Turon et al., 1992).
Hipparcos had a physical limit in the number of stars observable in a single field
of view, and it suffered from glare effects on the telescope when observing stars
very close together on the sky. Therefore, decisions were made on a case-by-
case basis as to which stars to observe, depending on the number and position
of stars in each field of view. The Hipparcos Mission Pre Launch Status Report
states that: “Once the list of likely cluster members had been established and
the worst veiling glare cases excluded, a somewhat arbitrary compromise had
to be found ”. The hand selection of stars for observation makes it impossible

1Although the PDF must be normalised, it is convenient to define the un-normalised
PDF first, and then come back to the normalisation constant when all of the components
of the PDF have been defined.
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to accurately model a selection function based on apparent magnitude that
can describe the selection probability for the underlying cluster population,
which does not strictly follow the definition given in Eq. 6.4. However, as the
Hipparcos star selection mostly depended on the proximity of target stars to
each other on the sky and not on magnitude, the effects on the results given
in Sects. 6.7 and 6.9 are minimal.

6.2.1 Models

The distribution of absolute magnitudes in a given photometric band is as-
sumed to be a Gaussian distribution around a mean colour-absolute magnitude
relation, Mmean, with some dispersion, σM :

ϕM = e
−0.5

(
M−Mmean(V−I)

σM

)2

. (6.5)

Here, the absolute magnitude is given by

M = m+ 5log10($) + 5− A, (6.6)

where m is the apparent magnitude of the star, $ its parallax, and A is the
interstellar extinction of the star in the same photometric band.

In the following work, the interstellar extinction is assumed to be known,
although it can be left as a free fit parameter. For the Pleiades, a single
extinction value of AHp=0.0975 magnitudes in the Hipparcos band H is used
for all members. This is derived from a reddening of E(B − V ) = 0.025 ±
0.003 found by Groenewegen et al. (2007), which is converted to an extinction
estimate in the visual band through AV = 3.1E(B − V ) and then into the
Hipparcos band Hp. For the Hyades, the level of extinction is assumed to be
negligible, and an extinction of AHp=0 is assumed. If available, individual
extinction estimates for each star could be used, in order to correctly take
effects of differential reddening into account.

The term Mmean(V − I) gives the mean absolute magnitude of stars as a
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function of colour, while σM is the intrinsic dispersion. For simplicity, known
binaries are removed. Additionally, the given distribution does not support the
giant branch, since this would require the magnitude function to turn back
on itself, giving a non-unique solution. Therefore, giants are also removed,
enabling the application of this method to all clusters, irrespective of age.

The fitting procedure has two options:

1. It fits the position of points on the colour-absolute magnitude diagram, to
which a spline function is fitted in order to determine a colour-dependent
absolute magnitude distribution approximating the isochrone of the clus-
ter; or

2. If a theoretical isochrone is supplied as input, the shape of the magnitude
distribution is taken from the isochrone. While the shape of the isochrone
is conserved, the isochrone is free to be shifted in absolute magnitude
(equivalent to a shift in distance).

If using the second option, the age and metallicity of the cluster must be
assumed. This makes the first option preferable for clusters with little infor-
mation on age and metallicity, because parameters can be determined without
having to be concerned with models that depend on this information.

6.3 Cartesian to galactic coordinate transformation

The spatial distribution of the cluster is given in Cartesian coordinates by a
Gaussian distribution in each axis:

ϕx = e
−0.5

(
x−X0
σS

)2

(6.7)

ϕx = e
−0.5

(
y−Y0
σS

)2

(6.8)

ϕz = e
−0.5

(
z−Z0
σS

)2

, (6.9)
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where X0, Y0, and Z0 define the centre of the cluster in each axis, and σS
gives the variance of the distribution.

To transform this Cartesian PDF into polar coordinates as required for our
observables r, l, and b, we start with the relationship between our two sets of
variables and find the inverse:

r =
√
x2 + y2 + z2 =⇒ x =

√
r2 − y2 − z2 (6.10)

l = tan−1
(y
x

)
=⇒ y = tan(l)x (6.11)

b = sin−1
(z
r

)
=⇒ z = rsin(b) . (6.12)

Then we have two equations and two unknowns:

x2 = r2 − y2 − z2 = r2 − tan2(l)x2 − r2sin2(b) (6.13)

x2(1 + tan2(l)) = r2 − r2sin2(b) (6.14)

x2 =
r2 − r2sin2(b)

1 + tan2(l)
(6.15)

x = rcos(b)cos(l) (6.16)

y = rcos(b)sin(l) . (6.17)

Then we require the Jacobian: r2cos(b).
By substituting the x, y, and z found above into the original PDF and

multiplying by the Jacobian of the transformation, we find the PDF in the
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new coordinate system:

ϕrlb =

r2cos(b)

e
− 0.5

σ2
S

((rcos(b)cos(l)−X0)2+(rcos(b)sin(l)−Y0)2+(rsin(b)−Z0)2)

. (6.18)

By rotating our coordinate system l, b → l′, b′ to align the cluster centre
with the X axis, we have new coordinates l′ and b′ for all the stars. In this
rotated coordinate system, the cluster has a position Y ′0 = Z ′0 = 0, and X ′ is
equivalent to the distance to the clusters centre. The above spatial probability
distribution function can then be simplified as

ϕr′l′b′ = r2cos(b′)e
− 0.5

σ2
S

(R2+r2−2rRcos(b′)cos(l′))
(6.19)

where the term r2cos(b′) is the Jacobian of the coordinate transformation, R
the mean distance to the cluster, r the distance to the individual star, and l′

and b′ are the rotated coordinates of the star.
It should be noted that the two coordinate systems are used simultaneously.

The rotated coordinates (l′, b′) are used in the integration over position to
simplify the integrals as explained above. However, in the analytic solution to
the integrals over µα∗µδvr, the unrotated coordinates l and b are used.

The Gaussian spatial distribution was chosen for ease of implementation,
and as a first approximation of the cluster’s spatial structure. It is possible
to use a distribution specifically suited to open clusters, such as King’s profile
(King, 1962), which could make the distribution more realistic. This is a
possible improvement for later additions to this work.

Finally, the velocity distribution in Cartesian coordinates is defined as the
velocity ellipsoid:

ϕv = e
−0.5

(
U−Umean

σU

)2
−0.5

(
V−Vmean

σV

)2
−0.5

(
W−Wmean

σW

)2

, (6.20)
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where Umean, Vmean, and Wmean are the components of the cluster’s mean ve-
locity along each Cartesian axis.

The distribution in observational errors is given by

E(x|x0) = E($|$o)E(µα∗ |µα∗,0)E(µδ|µδ,0)E(vr|vr0)δ(m, l′, b′). (6.21)

All observational errors are assumed to follow a Gaussian distribution with a
variance given by the formal error εx. Here, $ is the parallax, µα∗ and µδ the
proper motions, and m the apparent magnitude. The delta function δ(m, l′, b′)
describes the case for which a parameter’s observational error is small enough
to be deemed negligible.

An additional benefit of using this formulation with ‘true’ object parame-
ters in the models and then linking these true parameters with the observed
quantities is that observational data including negative parallaxes can be used
directly without problems attempting to calculate the logarithm of a negative
number (e.g. in Eq. 6.6). The inclusion of stars with negative parallaxes
is essential for avoiding biasing the sample by preferentially removing more
distant stars and biasing the average distance by selecting the stars with only
positive errors.

6.4 Integration of the Likelihood function

To evaluate D(x|θ) in Eq. 6.1 we must integrate over all x0, giving a multiple
integral that can be split into three parts. First is the integral over variables
with assumed zero error, second kinematics, and finally distance.

6.4.1 Integration over m0, l′0 and b′0

As these variables have errors given by the delta function, (m, l′, b′) = (m0, l
′
0, b
′
0)

so we can use (m, l′, b′). This avoids integrating over these three parameters.
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6.4.2 Integration over µα∗,0, µδ,0 and vr0

The triple integral over µα∗,0, µδ,0 and vr0 is∫
∀µα∗,0µδ,0vr0

ϕv(U, V,W )E(z|z0) dµα∗,0 dµδ,0 dvr0 (6.22)

where

E(z|z0) = e
−0.5

(
µα∗−µα∗,0

εµα∗

)2

e
−0.5

(
µδ−µδ,0
εµδ

)2

e
−0.5

(
vr−vr0
εvr

)2

. (6.23)

In order to perform the integral, the function ϕv(U, V,W ) must be expressed
in terms of µα∗,0, µδ,0, and vr0. This is achieved through the following expres-
sions:

U = a1µα∗r + b1µδr + c1vr

a1 = −kcos(b)sin(l)

b1 = −ksin(b)cos(l)

c1 = cos(b)cos(l)

(6.24)

V = a2µα∗r + b2µδr + c2vr

a2 = kcos(b)cos(l)

b2 = −ksin(b)sin(l)

c2 = cos(b)sin(l)

(6.25)
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W = a3µα∗r + b3µδr + c3vr

a3 = 0

b3 = kcos(b)

c3 = sin(b)

(6.26)

where k = 4.74Kmyear
”s pc

.
Therefore ϕv(U, V,W ) can be written in terms of µα∗,0, µδ,0 and vr0 as

ϕv(U, V,W ) = ep(µα∗,0,µδ,0,vr0|r). (6.27)

This can be integrated using the definite integral,∫ ∞
−∞

e−(αx2+βx+γ)dx =

√
π

α
e

(
β2

4α
−γ

)
, (6.28)

giving the solution∫
∀µα∗,0µδ,0vr0

ϕv(U, V,W )E(x|x0) dµα∗,0 dµδ,0 dvr0 = K e

(
Y 2

4X
−Z

)
(6.29)

where K, X, Y , and Z are defined as:

K =

√
− π3

J2E1X

X =
D2

1

4E1

− F1

Y =
B1D1

2E1

− C1

Z =
B2

1

4E1

− A1
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A1 =
A2

2

4J2

−D2

B1 =
A2B2

2J2

− E2

C1 =
A2C2

2J2

− F2

D1 =
B2C2

2J2

−G2

E1 =
B2

2

4J2

−H2

F1 =
C2

2

4J2

− I2

A2 = − µli
ε2µα∗
−
(
a1U0

σ2
U

+
a2V0

σ2
V

+
a3W0

σ2
W

)
r

B2 =

(
a1b1

σ2
U

+
a2b2

σ2
V

+
a3b3

σ2
W

)
r2

C2 =

(
a1c1

σ2
U

+
a2c2

σ2
V

+
a3c3

σ2
W

)
r

D2 =
1

2

(
µ2
li

ε2µα∗
+
µ2
bi

ε2µδ
+
v2
ri

ε2vr
+

U2
0

σ2
U

+
V 2

0

σ2
V

+
W 2

0

σ2
W

)

E2 = −µbi
ε2µδ
−
(
b1U0

σ2
U

+
b2V0

σ2
V

+
b3W0

σ2
W

)
r

F2 = −vri
ε2vr
−
(
c1U0

σ2
U

+
c2V0

σ2
V

+
c3W0

σ2
W

)
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G2 =

(
b1c1

σ2
U

+
b2c2

σ2
V

+
b3c3

σ2
W

)
r

H2 =
1

2

1

ε2µδ
+

1

2

(
b2

1

σ2
U

+
b2

2

σ2
V

+
b2

3

σ2
W

)
r2

I2 =
1

2

1

ε2vr
+

1

2

(
c2

1

σ2
U

+
c2

2

σ2
V

+
c2

3

σ2
W

)
J2 =

1

2

1

ε2µα∗
+

1

2

(
a2

1

σ2
U

+
a2

2

σ2
V

+
a2

3

σ2
W

)
r2 (6.30)

6.4.3 Integration over R

The remaining integral has no analytical solution and will therefore be per-
formed numerically:

D(x|θ) =

∫
r

ϕM0ϕ$0l′0b
′
0
K e

(
Y 2

4X
−Z

)
e−0.5($−$0

ε$
)
2

dr0 (6.31)

6.5 Normalisation coefficient

Until now we have been using the un-normalised joint probability distribu-
tion. Normalisation is achieved by dividing by a normalisation constant, C.
The normalisation constant is found by integrating the un-normalised joint
probability distribution D(x|θ) over all x:

C =

∫
∀x0

∫
∀x
ϕM0ϕ$0l′0b

′
0
ϕv0(U, V,W )S(x)E(x|x0) dx dx0. (6.32)

This integral can be performed in two parts, where I is defined such that

C =

∫
∀x0

ϕM0ϕ$0l′0b
′
0
ϕv0(U, V,W )

∫
∀x
S(x)E(x|x0) dx︸ ︷︷ ︸

I

dx0. (6.33)

Substituting in the selection function S(x) and the PDF of the observational
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errors E(x|x0) gives the following seven-dimensional integral:

I =

∫
∀x
θ(m−mlim)E(x|x0) dx. (6.34)

This integral can be split into two parts. The integral over the delta function
in E(x|x0) that, by definition, gives one; and the integral over each Gaussian
error,

I =

θ(m−mlim)∫
∀$µα∗µδvr

e−0.5($−$0
ε$

)
2

e
−0.5

(
µα∗−µα∗,0

εµα∗

)2

e
−0.5

(
µδ−µδ,0
εµδ

)2

e
−0.5

(
vr−vr0
εvr

)2

d$ dµα∗ dµδ dvr

∫ ∞
−∞

δ(m, l′, b′)dmdl′ db′

(6.35)

I = θ(m−mlim)(2π)2ε$εµα∗ εµδεvr . (6.36)

Here, θ(m −mlim) acts to provide an upper limit to the integral over all M .
Substituting I back into C we have

C =

(2π)2ε$εµα∗ εµδεvr∫ mlim

−∞

∫ ∞
0

∫ π/2

−π/2

∫ 2π

0

∫ ∞
−∞

∫ ∞
−∞

∫ ∞
−∞

ϕm0ϕr0l′0b′0

ϕv(U, V,W ) dU dV dW dl′0 db
′
0 dr0 dm0

. (6.37)

As with in the previous section, the integral can be split up into a number of
parts.
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6.5.1 Integration over m

Evaluating first the integral over apparent magnitude gives∫ mlim

−∞
ϕm0 dm0 =

√
2π

2
σMerfc

(
A−mlim√

2σM

)
(6.38)

where erfc is the complementary error function, and

A = 5log(r0)− 5 +Mmean. (6.39)

6.5.2 Integration over (U, V,W )

Integrating over (U,V,W) gives∫ ∞
−∞

∫ ∞
−∞

∫ ∞
−∞

ϕv(U, V,W ) dU dV dW = (2π)3/2σUσV σW . (6.40)

6.5.3 Integration over l′0, b′0, and r0

The remaining triple integral has no analytical solution and will be performed
numerically:

C =

B

∫ ∞
0

∫ π/2

−π/2

∫ 2π

0

erfc
(
A−mlim√

2σM

)
ϕr0l′0b′0 dl

′
0 db

′
0 dr0

(6.41)

with: B = (2π)4

2
σUσV σWσMε$εµα∗ εµδεvr

6.5.4 Formal errors

The Hessian matrix is constructed through numerical differentiation of the
Likelihood function at its global maximum. The inverse of the Hessian matrix
is the covariance matrix, and the formal errors are calculated from the square
root of the diagonal of the covariance matrix. After calculating the covariance
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matrix and formal errors, correlations between each of the parameters can
easily be obtained.

6.5.5 Data binning

While some parameters, such as mean distance, are ‘global’ parameters de-
scribing some general property of the open cluster, a number of the parameters
show a dependence on colour. For example, the physical spatial distribution of
some clusters is believed to change as a function of mass, and therefore colour,
through the process of mass segregation.

With a sufficiently precise data set containing enough stars, it is possible to
fit a smooth function describing a parameter’s colour dependence, if applicable,
by estimating the parameters of, for example, a polynomial approximation
of the dependence. Owing to the limited available data in the Hipparcos
catalogue for the Pleiades and Hyades, there is insufficient information to
constrain such distributions in all cases, so where necessary an approximation
has been made by binning the data.

A star’s normalised PDF can be thought of as the sum of several other
PDFs, such that

D(xi|θ)

C =
W(V − I)1D(xi|θ) +W(V − I)2D(xi|θ) + ...

C (6.42)

where C is the normalisation constant and W(V-I) a selection function de-
pendent on colour:

W =

w, if (V − I)min < (V − I)star < (V − I)max.

0, otherwise,
(6.43)

where w is a normalised coefficient that depends on the relative number of
stars per colour bin.
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The normalisation constant C is found by integrating the PDF over all x:

C =

∫
∀x
D(x|θ) dx (6.44)

≡
∫
∀x
W(V − I)1D(x|θ)dx+

∫
∀x
W(V − I)2D(x|θ)dx+ ... (6.45)

The strength of this approach is that parameters with a single value of
interest (with no colour dependence) are described by only one parameter in
θ. Where more information can be gained by producing an estimate of a
parameter in each colour bin, it is possible to define a separate parameter for
each colour bin.

The parameters to be estimated therefore become

θ = (R, σ
(n)
R ,M (n+1), σ

(n)
M , U, V,W, σUVW ), (6.46)

where n is the number of bins, R the mean distance to the cluster (assuming a
spherical Gaussian distribution), σnR the intrinsic dispersion around the mean
distance in each colour bin, Mn+1 are the absolute magnitude values used
for fitting the spline function of the isochrone, U , V , and W are the three
components of the velocity ellipsoid, and σUVW is the velocity dispersion.

6.5.6 Testing with simulations

The method described in Sect. 6.2 was implemented and tested extensively
using simulations. During development and testing of the MLE implemen-
tation, simulated catalogues were constructed using Monte Carlo techniques.
Each star in the simulated population is given a position in Cartesian coor-
dinates, which is then converted into a sky position and distance, and given
a velocity in Cartesian coordinates, which is converted into proper motions
and a radial velocity. The values are randomly chosen from a spherical Gaus-
sian spatial distribution and a velocity ellipsoid, with the mean and variance
of each distribution chosen by hand. The relationship between colour and
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absolute magnitude is assumed to be linear for simplicity.
Basic simulation of observational errors was achieved by adding an error

value derived from a Gaussian random number generator to each parameter
in the simulated catalogue, with the variance chosen to be a value similar to
the errors found in the Hipparcos catalogue. Additionally, the more realistic
AMUSE open cluster simulator (Pelupessy et al., 2013) was used to simulate
open clusters with more realistic distributions, including a realistic isochone.

The final stage of testing with simulations uses a set of 500 simulated open
clusters found in the Gaia Simulator (Masana et al., 2010; Robin et al., 2012))
in order to test the suitability of the method in use with Gaia data (see Sect.
6.10). The Gaia Object Generator (Isasi et al., 2010) was used to simulate
realistic errors as expected for Gaia catalogue data. Using the ML method
on this simulated data showed the successful extraction of an isochrone-like
sequence from error-effected data (Fig. 6.1) and could reproduce the input
distance of the cluster, within formal error bounds and, after repeated testing,
with no significant bias.

In the following sections (6.6, 6.7, 6.8, and 6.9), we apply the method to the
best currently available data on the Pleiades and the Hyades. In Sect. 6.10 we
use simulations to extrapolate the use of the method out to greater distances,
in expectation of the Gaia data.

6.6 Data

The method described here has been applied to the new Hipparcos reduction
(van Leeuwen, 2007) data for 54 well known Pleiades members. The 54 cluster
members are believed to be a clean sample and have been identified and used in
numerous previous studies (e.g. van Leeuwen & Hansen Ruiz (1997); Robichon
et al. (1999a); Makarov (2002)).

The new Hipparcos reduction has several advantages over the original Hip-
parcos catalogue, including a reduction in the formal errors by up to a factor
of 4 for the brightest stars and a claimed reduction, by up to a factor of 10, in
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Figure 6.1: CMD for a simulated Pleiades like cluster found in the GaiaSimu library, with
a distance of 2.6 kpc. Open circles show the ‘true’ simulated absolute magnitudes without
errors. Blue crosses are the points fitted with the ML method applied to the data after the
simulation of observational errors. The solid line is the resulting isochrone-like sequence,
showing accurate reconstruction of the isochrone-like sequence from error effected data.
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the correlations between stars observed over small angles. This was achieved
through a completely new method for formulating the Hipparcos satellite’s
attitude model, replacing the previous ‘great-circles’ reduction process with a
fully iterative global solution. This new method of catalogue reconstruction
supersedes an earlier attempt by Makarov (2002) to reduce correlation in the
Hipparcos catalogue specifically for the Pleiades open cluster.

This reduction in correlations is particularly important in the study of open
clusters. This is because correlated errors in the original Hipparcos catalogue
were blamed for the cases of discrepancy between distances calculated with
Hipparcos parallaxes, compared with photometric data or other methods.

Where radial velocity information has been used, it was obtained from Mer-
milliod et al. (2009); Raboud & Mermilliod (1998); Morse et al. (1991); Liu
et al. (1991) through the WEBDA database.

6.7 Results - Pleiades

The results of the application of the method described in Sect. 6.2 can be
seen in Tables 6.1 and 6.3. Parameters describing the general properties of the
cluster, such as mean distance and mean proper motion are given in Table 6.1,
whereas colour-dependent parameters are given in Table 6.3. For the latter,
stars were divided into four color bins. The choice of bins is arbitrary and
have been selected to give roughly the same number of stars per bin.

6.7.1 Distance

The mean distance to the Pleiades has been estimated to be 120.3 ± 1.5 pc.
This agrees with van Leeuwen (2009), who finds 120.2 ± 2.0 pc using the
same dataset. The formal errors assigned to each parameter are calculated
from the square root of the covariance matrix of the Likelihood function. The
formal error is approximately 25% smaller than from van Leeuwen (2009),
with the increased precision from the use of this method attributed to the
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inclusion of parallax, position, proper motion, colour, and apparent magnitude
information.

The distance is given as a general property of the cluster alone (Table 6.1),
because there is no physical reason to expect differing distances for different
colour bins, unlike, for example, the size parameter, σR.

The mean distance to the cluster has been included as a colour-dependent
parameter during testing, in order to check the ML method functions as ex-
pected and to check that there are no biases present in the Hipparcos catalogue.
The mean distance to the cluster was found to be consistent across all colour
bins, within the error bounds. This is a good test that there is no colour-
dependent bias in the Hipparcos Pleiades data.

6.7.2 Kinematics

Testing was carried out for two cases: first where only Hipparcos data has
been used, and second including the use of radial velocity data where available.
Fifteen Hipparcos Pleiades members have radial velocity data (less than one
third of the sample). Working in a mixed case, where some stars have radial
velocity information and some do not, is possible through marginalisation of
terms with missing data from the joint PDFs.

With the inclusion of radial velocity data, the variance in the space velocity
has been found to be nearly 6 kms−1. We believe that a lack of homogeneity
in the data is responsible for the large variance, because the data is compiled
from several sources. While there is no change in the estimation of the mean
distance to the cluster between the two cases, the formal errors are in fact
larger with the inclusion of radial velocity data. Therefore, the lack of an ac-
curate and homogeneous catalogue of radial velocities for a significant number
of Hipparcos Pleiades stars means that radial velocity information has been
ignored, and the results shown are for a fitting to a Gaussian distribution in
proper motion rather than a three-dimensional space velocity.

The variance in the distribution in proper motions is found to be 1.7± 0.3
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and 1.5±0.2 mas year−1 for µα∗ and µδ, respectively. Taking the distance to be
120.3 pc, this variance is equivalent to a variance in the velocity distribution
of the cluster of 1.3± 0.4 kms−1.

6.7.3 Size

The spatial distribution of the open cluster is modelled using a spherical Gaus-
sian distribution, with its center at some distance R and a variance around
the mean distance σR. The variance has been included as a colour-dependent
term and is estimated for each colour bin. The results show an increase in σR
with an increase in colour (V − I), which corresponds directly to a decrease
in stellar mass.

As the variance in the spatial distribution increases from 3.3 pc to 13.2
pc over the full colour range for the observed stars, we find strong evidence
for mass segregation. This relationship between stellar mass and the spatial
distribution of stars in a cluster has been reported for the Pleiades with a
similar degree of segregation, using a star counting technique for the two-
dimensional case of the cluster projected onto the plane of the sky (Converse
& Stahler, 2008).

6.7.4 Absolute magnitude distribution

An approximation to the isochrone of the cluster is found by fitting points in
the colour-absolute magnitude diagram to find the absolute magnitude distri-
bution of the star as a function of colour. A spline function converts these
points into a smooth line, which can be thought of as the observed isochrone
of the cluster. The points used for the spline function are found by the fitting
method and labelled A and B for each colour bin in Table 6.3. The resolu-
tion of the resulting fit only depends on the number of stars, which limits the
possible number of bins, and the precision of the data.

The intrinsic dispersion, σM , is the dispersion in absolute magnitude around
the mean magnitude given by the magnitude distribution, over any narrow
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Parameter Estimated Error

Distance (pc) 120.3 1.5
µα∗ (mas year−1) 19.9 0.3
µδ (mas year−1) -45.3 0.3

σµα∗ (mas year−1) 1.7 0.3
σµδ (mas year−1) 1.5 0.2

Table 6.1: Colour-independent results obtained for the Pleiades from the method applied to
the new Hipparcos reduction.

colour range (V − I) to (V − I) + δ(V−I). Since the dispersion is not constant
over the whole colour range, the value of σM is given for each colour bin.

The results of the fitting can be seen in Table 6.3, where they have been
plotted onto the colour magnitude diagram of the Pleiades in Fig. 6.2. The
theoretical isochrone taken from the PARSEC library (Bressan et al., 2012)
can be seen in green. The isochrone was generated using PARSEC v1.1, with
an age of 100 Myr, and Z = 0.03.

Excluding the turn off (V − I < 0.1), the shape of the theoretical isochrone
is accurately obtained by the fitting procedure (see Fig. 6.2). The ∼0.3 mag
difference in absolute magnitude between the theoretical isochrone and the
sequence found by the fitting procedure is the discrepancy historically reported
between Hipparcos and photometry-based methods.

Above the main sequence turn off, neither the theoretical isochrone nor the
results from this work accurately fit the data. This is due to the presence of
stars migrating to the giant branch.

The intrinsic dispersion of absolute magnitude around the isochrone is found
for each colour bin. The large dispersion in the first bin is due to the presence
of the turn off, and subsequently the dispersion around the main sequence
decreases with increased V − I.
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Figure 6.2: Colour-absolute magnitude diagram for the 54 Hipparcos Pleiades members. MH

is the absolute magnitude in the Hipparcos photometric band calculated using the posterior
parallax. The blue crosses are the results of the fitting, with the spline function giving the
magnitude dependence as the thick line. The green dashed line is the theoretical isochrone
generated using PARSEC v1.1, with an age of 100 Myr, and Z = 0.03 (Bressan et al.,
2012).

Parameter Estimated Error

Distance (pc) 122.1 3.7
µα∗ (mas year−1) 20.0 0.5
µδ (mas year−1) -45.9 0.3

σµα∗ (mas year−1) 2.0 0.4
σµδ (mas year−1) 1.3 0.3

Table 6.2: Results obtained for the Pleiades after cutting all stars at or above the apparent
location of the main sequence turn off: (V − I) > 0.1
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(−0.1 < V − I < 0.0) (0.0 < V − I < 0.4) (0.4 < V − I < 0.6) (0.6 < V − I < 0.8)

Parameter Estimated Error Estimated Error Estimated Error Estimated Error

σR (pc) 3.4 1.0 4.9 0.9 10.3 2.9 13.1 3.8
σM (mag) 1.6 0.5 0.45 0.06 0.22 0.06 0.17 0.06

A (start point) -2.4 0.7 0.2 0.2 3.0 0.1 4.2 0.1
B (end point) 0.2 0.2 3.0 0.1 4.2 0.1 5.4 0.3

Table 6.3: Colour-dependent results obtained for the Pleiades from the method applied to the new Hipparcos reduction. In the
four bins there are 9, 21, 12, and 12 stars (low (V − I) to high). A and B are the points found for the spline function fitting to
the colour-absolute magnitude relationship, with A at the start of the bin and B at the end.

(0.1 < V − I < 0.4) (0.4 < V − I < 0.6) (0.6 < V − I < 0.8)

Parameter Estimated Error Estimated Error Estimated Error

σR (pc) 9.3 2.5 8.2 2.3 12.5 3.6
σM (mag) 0.14 0.06 0.22 0.06 0.13 0.06

A (start point) 1.6 0.2 3.1 0.1 4.1 0.1
B (end point) 3.1 0.1 4.1 0.1 5.8 0.2

Table 6.4: Results obtained for the Pleiades after cutting all stars at or above the apparent location of the main sequence turn
off. The results remain unchanged within the error range. In the three bins there are 9, 12, and 12 stars (low (V − I) to high).



6.8 Correlations

The main argument against Hipparcos-based distance estimates of open clus-
ters has been that Hipparcos trigonometric parallaxes have correlated errors
on small angular scales. Indeed, this has been cited as the cause of the large
(0.3 mag) discrepancy in the Pleiades distance modulus between Hipparcos-
based and photometry-based methods. Narayanan & Gould (1999) argue that
correlated parallax errors cause a stark difference between Hipparcos trigono-
metric parallaxes and the Hipparcos kinematic parallaxes derived from proper
motions.

According to Narayanan & Gould (1999), the proper-motion-based parallax
can be determined from Hipparcos data using

$pm,i =

〈
(Vt)i

∣∣C−1
i

∣∣µHIP,i
〉〈

(Vt)i
∣∣C−1

i

∣∣ (Vt)i〉 , (6.47)

where (Vt)i is the transverse velocity of the cluster in the plane of the sky
at the position of the star i, Ci is the sum of the velocity dispersion tensor
divided by the square of the mean distance to the cluster and the covariance
matrix of the Hipparcos proper motion, and µHIP,i is the vector describing the
proper motion of the star.

Narayanan and Gould used a plot showing the contours of the difference
between Hipparcos parallaxes and the parallaxes derived from proper motions
(Eq. 6.47) to argue that the Hipparcos parallaxes are systematically larger by
up to two mas throughout the inner 6 ◦ of the Pleiades. This figure has been
recreated in Fig. 6.3 with the 54 member stars used in this work.

Figure 6.4 has been produced using the method described by Narayanan
& Gould (1999), but using parallax data from the new Hipparcos reduction.
While in the original plot from Narayanan and Gould there is clearly a region
where the trigonometric parallaxes are larger than those derived from proper
motions, this feature has been reduced in severity by a factor of two by using
the new Hipparcos reduction.
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This new figure confirms, for the case of the Pleiades, claims made by van
Leeuwen (2007) that correlations in the new reduction have been reduced sig-
nificantly. Additionally, this disagrees with claims that the shorter distance for
the Pleiades derived from Hipparcos is due to the correlated errors in parallaxes
for Pleiades stars. If this was the case, one would expect the distance estimate
from the new Hipparcos reduction to be greater now that the correlations have
been reduced.

In fact, the distance derived from the new reduction in this work and by van
Leeuwen (2009) put the Hipparcos distance to the Pleiades at 2.5 pc longer
than those derived from the original Hipparcos catalogue, a much smaller
difference than the roughly 10% historic discrepancy. The method presented
here has also been applied to the original Hipparcos catalogue. The difference
between the estimated distance from the old and new Hipparcos reductions
is only 2%. The small change in distance estimate despite the reduction in
correlations by a factor of 10 implies that correlations cannot be responsible
for the long-standing discrepancy.

Additionally, in the calculation of the proper-motion-based parallax, a mean
distance to the cluster must be assumed. Narayanan & Gould (1999) derived
a distance to the Pleiades of 131 pc using Hipparcos proper motions, which
was then used in calculating the proper-motion-based parallaxes that form the
basis of Fig. 6.3 and their argument against Hipparcos. Using the distance of
120 pc as found in this work and implied by studies using Hipparcos parallaxes,
the baseline for the correlation plots is shifted, as can be seen in Fig. 6.6. In
this final figure no significant residual biasing the results is apparent, contrary
to the original claims.

6.9 Results - Hyades

This method has also been applied to the new Hipparcos reduction for the
Hyades open cluster. Of the 282 potential Hyades members used by Perryman
et al. (1998), a detailed study by de Bruijne et al. (2001) finds 218 probable
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Figure 6.3: Smoothed contours of the difference between the Hipparcos parallaxes and the
proper-motion-based parallax ($Hip −$pm) of the 54 Pleiades cluster members, with data
taken from the original Hipparcos catalogue (1997). Thin contours are at intervals of 0.1
mas, thick contours at intervals of 1 mas.

Figure 6.4: Same as Fig. 6.3, but with parallax data taken from the new Hipparcos reduction
(2007).
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Figure 6.5: Same as Fig. 6.3, but with an assumed mean cluster distance of 120 pc as
implied by the Hipparcos data for the computation of the proper motion based parallax.

Figure 6.6: Same as Fig. 6.4, but with an assumed mean cluster distance of 120 pc as
implied by the Hipparcos data for the computation of the proper motion based parallax.



members, which are used as the basis of this study. Radial velocities from
ground-based observations have been collected in Perryman et al. (1998) and
used extensively here.

The star HIP20205 was rejected as a giant, because the isochrone fitting
does not currently support fitting of the giant branch.

Galli et al. (2012) reject the star HIP28774 in their analysis of the Hyades
cluster due to conflicting data for this star in the old and new Hipparcos
reductions. In the following sections, this star is not present in our membership
list after selecting only the stars in the inner 10 pc. When using the full 218
probable members, the star is included, however its removal has no real effect
on the results. This is due to the very low precision of the data on this star in
the Hipparcos catalogue, and therefore its very low statistical weight within
the method.

6.9.1 Distance

As in Perryman et al. (1998), we select only the stars within the inner 10 pc
for the distance estimation, since the large spatial dispersion and presence of
numerous halo stars is not modelled well by a spherical Gaussian distribution.
The distance to the Hyades has been estimated as 46.35 ± 0.35 pc. This is
identical to Perryman et al. (1998), who finds 46.34 ± 0.27 pc, and slightly
smaller than van Leeuwen (2009), who finds 46.45 ± 0.50 pc. Perryman et al.
(1998) used the original Hipparcos catalogue, whereas van Leeuwen (2009)
used the new reduction from 2007. Both authors used differing membership
selection and determination techniques.

The three-dimensional dispersion in the spatial distribution of the cluster’s
core is estimated to be 3.4 ± 0.2 pc, which is consistent with the observed dis-
tribution in sky position. Assuming this dispersion in the spatial distribution,
the selection of stars with cluster radius of less than 10 pc corresponds to a 3
σ limit, and so the spatial distribution of the core of the cluster should not be
significantly affected.
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Using the ML method on the full 218 probable member stars, including
halo stars, the mean distance is found to be 42.6 ± 0.5 pc. The decrease in
precision with the increase in the number of stars is attributed to the clearly
non-Gaussian distribution of a dense core and a large number of disperse halo
stars. In this case the spatial distribution of the cluster’s core is estimated to
be 15.8 ± 3.9 pc. The modelling of the spatial distribution could be improved
through the use of a King’s profile (King, 1962) or an exponential distribution.
This is being considered for future improvements.

That member stars are found with distances from the center greater than
its tidal radius of ∼10 pc (Madsen et al., 2001) is reasonable, and is expected
due to the large number of so-called halo stars. These stars have been found
to exist in the Hyades at a radius of 10 to 20 pc (Brown & Perryman, 1997),
and although they are effected by the galactic gravitational field, they remain
bound to the cluster for some significant time.

6.9.2 Kinematics

The space velocity of the Hyades has been found to be 46.5 ± 0.2 kms−1,
with an internal dispersion on the velocity of 1.11± 0.05 kms−1. The internal
dispersion is slightly larger than those in the literature reviewed by de Bruijne
et al. (2001), who find a dispersion of ∼0.3 kms−1.

As for the case of the Pleiades, the high velocity dispersion is attributed to
an inhomogeneous radial velocity data. As highlighted by Brown & Perryman
(1997), the radial velocity data for the Hyades comes from a combination of
sources with greatly varying precision and zero points.

6.9.3 Absolute magnitude distribution

As described in Sect. 6.7.4, an estimate of the isochrone of the cluster is
produced through fitting a smoothed line to the mean absolute magnitude
Mmean in Eq. 6.5. The results of the fitting can be seen in Fig. 6.7, with the
theoretical isochrone overlaid in green.
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Parameter Estimated Error

Distance (pc) 46.35 0.35
U (kms−1) -42.24 0.11
V (kms−1) -19.27 0.12
W (kms−1) -1.55 0.11

σUVW (kms−1) 1.10 0.05

Table 6.5: Colour-independent results obtained from the method applied to Hyades stars in
the new Hipparcos reduction.

In contrast to the results for the Pleiades, the isochrone from the ML method
and the theoretical isochrone from the PARSEC library are in strong agree-
ment in both shape and position over most of the main sequence, with some
divergence at the extreme ends of the colour range, where there are few stars
to constrain the model fit.

The offset in the case of the Pleiades was caused by the long-standing dis-
crepancy between Hipparcos and photometric methods. This is not present in
the case of the Hyades, where Hipparcos-based distances generally agree with
other methods.

Dispersion around the main sequence has been greatly reduced compared
with computing the absolute magnitude from the data directly, by comput-
ing posterior distances for each star from the results of the fitting and the
individual Hipparcos observations.

6.10 Outlook for Gaia

The method described in Sect. 6.2 will be particularly useful after the release
of the Gaia astrometric catalogue. That the Gaia catalogue will include all of
the information required for applying this method, including radial velocities
for GRV S <16, in one self-consistent catalogue makes Gaia ideal for studying
open clusters to greater precision and at greater distances than was possi-
ble previously. Indeed, Gaia is expected to observe some one billion stars,
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Figure 6.7: Colour-absolute magnitude diagram for the 128 Hipparcos Hyades members
found in the inner 10 pc of the clusters core. MHP

is the absolute magnitude in the Hipparcos
band, and is calculated using the posterior parallax. The blue crosses are the results of the
fitting, with the spline function giving the magnitude dependence as the thick line. The
dashed line is the theoretical isochrone from the PARSEC library, with an age of 630Myr
and Z = 0.024.
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(0.1 < V − I < 0.6) (0.6 < V − I < 0.8) (0.8 < V − I < 1.25) (1.25 < V − I < 1.8)

Parameter Estimated Error Estimated Error Estimated Error Estimated Error

σR (pc) 3.42 0.27 5.50 0.67 2.30 0.15 2.55 0.45
σM (mag) 0.39 0.04 0.32 0.04 1.63 0.19 0.34 0.12

A (start point) 0.77 0.24 3.98 0.05 5.25 0.07 7.25 0.15
B (end point) 3.98 0.05 5.25 0.07 7.25 0.15 9.26 0.57

Table 6.6: Colour-dependent results obtained from the method applied to the new Hipparcos reduction for the Hyades open cluster.
In the four bins there are 76, 55, 53, and 21 stars (low (V − I) to high).
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including stars in numerous open clusters. This will allow application of this
method to many more clusters, including those at much greater distances than
was previously possible.

To test the performance of the ML method with Gaia data, a simulated
open cluster was created, and simulated Gaia observational errors applied. To
continue with the case study of the Pleiades, a simulated star catalogue for a
Pleiades-like cluster was obtained from GaiaSimu (Masana et al., 2010; Robin
et al., 2012). GaiaSimu is a set of libraries containing the Gaia Universe Model
and instrument models used by the Gaia Data Processing and Analysis Consor-
tium (DPAC). It contains a database of 500 simulated open clusters, including
the Pleiades, constructed from Padova isochrones and a Chabrier/Salpeter
IMF. To apply simulated Gaia observational errors, the data was processed
using GOG (see Ch. 3).

In the Gaia case, the selection function in Eq. 6.4 is modelled as a step
function at G = 20 mag. Because Gaia is expected to be complete up to this
magnitude, the step function should be a good approximation to the real case.

6.10.1 Pleiades with Gaia

The GaiaSimu and GOG simulated Pleiades contains some 1000 stars, placed
at a distance of 130 pc and occupying the same region of the sky as the real
Pleiades. With simulated parallax errors of between 10 and 100 µas, the vast
majority of the star’s distances are very accurately measured.

With such a precise data set, both the estimated distance from MLE and
the distance obtained directly from the mean of the parallax are both within
0.01 pc of the true value. This highlights that, for the nearest open clusters,
it will be possible with Gaia data to go further beyond the current goal of
determining the distance and kinematic and structural parameters, to having
highly detailed information on many aspects of open clusters.

In such cases, the mean distance of a cluster determined through the ML
method will not in itself be useful, although individual stars’ posterior dis-
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Figure 6.8: Results of the distance estimation to a simulated Pleiades-like cluster placed at
a factor of 10 to 30 times the original distance. Filled circles show the percentage difference
between the MLE-estimated distances and the true distance, open circles are the percentage
difference between the inverse of the mean of the parallax and the true distance, and green
shading highlights 1, 2, and 3σ errors extrapolated over the entire range.

tance estimates from the method will be unbiased and therefore preferable to
distances found by inverting individual parallaxes. In terms of determining a
cluster’s spatial distribution, the direct use of parallax information results in
a bias in the results not present during the application of the ML method.

6.10.2 Distant clusters with Gaia

To test the performance of the ML method with open clusters at greater dis-
tances, the GaiaSimu simulated Pleiades was modified, increasing the distance
while conserving all other properties. The open cluster was moved to a range
of distances between 10 and 30 times the originally assumed distance of 130 pc
(i.e. up to a distance of 4 kpc). Then the Pleiades-like clusters were processed
with GOG to simulate Gaia observational errors.

Using the same simulated open cluster moved to different distances allows
a direct comparison of the ML method performance at different distances.
Figure 6.8 shows the results of the distance estimation using the ML method,
showing the percentage difference between the ‘true’ distance and the distance
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estimated from MLE, ∆(dreal − dMLE)/dreal, and comparing this with the
percentage difference between the ‘true’ distance with the inverse of the mean
parallax, ∆(dreal − d1/$̄)/dreal. As the distance to the cluster increases, the
stars become fainter and the observational errors larger. As can be clearly seen
in Fig. 6.8, the mean of the parallax is susceptible to large random error, in
addition to Lutz-Kelker effects and other statistical biases, and is unsuitable
for accurate distance determination in magnitude-limited data sets and those
with significant observational errors.

As with the Hipparcos Pleiades and Hyades data, the CMD is plotted with
the isochrone-like sequence obtained from the observational data and shown in
Fig. 6.9. These plots have been created using the simulated clusters at 1300,
2600, and 3900 pc, showing that it is possible to obtain a reliable observational
isochrone from Gaia observations even when individual parallaxes are strongly
affected by observational errors.

With this simulated dataset, the ML method is confirmed as not suffering
from significant statistical biases, and it is expected to perform well with real
Gaia data.

6.10.3 Membership selection

When studying open clusters, especially those at greater distances, member-
ship selection has always been important and problematic. When applying the
ML method to distant open clusters in the Gaia catalogue, the density of stars
on the sky could cause problems with misclassification and source confusion.

However, with an expected source density at G < 20 mag in the galactic
plane of around 3×105 stars per square degree, Gaia’s windowing system for
object detection is small enough to give a low probability of source confusion
even when observing distant open clusters.

In terms of membership selection, the ML method’s estimation of an open
cluster’s parameters can be used directly to perform membership probability
tests. If the ML method is primed using a sample of probable members, a
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Figure 6.9: CMD for the simulated Pleiades like cluster at distances of 1300 pc (top), 2600 pc
(middle) and 3900 pc (bottom). The three clusters have 216, 143 and 114 observed members
respectively. Open circles show the ‘true’ simulated absolute magnitudes without errors, and
filled circles show the absolute magnitudes calculated directly from the simulated observations
including simulated gaia errors. Stars with negative parallaxes are omitted from the figure
but included in the ML estimation. Reddening in V − I is assumed known. The blue crosses
are the points fitted with the ML method and the solid line is the resulting isochrone-like
sequence.



χ2 test can be applied to calculate membership probability for each star in
the sample using the parallax, proper motion, and radial velocity information
simultaneously:

K2 = AC−1AT , (6.48)

where A is the vector ($i − $ML, µα,i − µα,ML, µδ,i − µδ,ML, vri − vr,ML),
and C−1 is the sum of the catalogue’s covariance matrix and the variance
on each parameter due to the clusters intrinsic dispersion in distance, proper
motion, and radial velocity. Here, $ML, µα,ML, µδ,ML, and vr,ML are the mean
parallax, mean cluster proper motion and mean radial velocity of the cluster,
determined from the ML method.

Stars with K2 > 16.25 are rejected, in correspondence with a χ2 test at
three-sigma level with four degrees of freedom. This process should be per-
formed using an iterative process, rejecting the worst outliers a few at a time
and recalculating all fitting parameters, until no further outliers remain.

Here, the estimated cluster distance and space velocity, including intrinsic
dispersion, are combined with the individual observations and their associated
errors in order to distinguish between members and non-members in a single
step.

Testing using a 1000-star sample of GOG simulated field stars added to the
five simulated Pleiades samples used in Fig. 6.8, the χ2 test excluded field
stars with a misclassification rate between 0.8 and 0.3%, assuming a worst
case of zero radial velocity information.

6.11 Conclusions

An improved method for estimating the properties of open clusters has been
presented, and tested using real data on two nearby and well studied open clus-
ters. In addition to distance estimation, internal kinematics and spatial struc-
ture were probed, with mass segregation detected in the case of the Pleiades.
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These results confirm that the method performs as expected and highlight the
potential future uses of such a method when high quality parallax information
is available from the Gaia mission.

After revisiting the ‘Pleiades problem’, an explanation was not found in
error correlation problems in Hipparcos2. Through the use of simulations we
find that Gaia will measure the distance to Pleiades stars with precision of a
fraction of a percent, enabling a conclusion to this long running discrepancy.

The ML method can be extended further to give more detailed information,
such as including a model for cluster ellipticity and orientation. It is possible
to include and compare different spatial and kinematic distributions, allowing
one to test predictions on spatial structure, mass segregation, and peculiar
motions, and to test for other properties such as cluster rotation. In the case
of the absolute magnitude distribution, it would be possible to give age and
metallicity estimates by fitting and comparing sequences of different theoretical
isochrones.

Unresolved binaries, which complicate studies of open clusters, can be de-
tected using the posterior distances calculated using the ML method and the
resulting colour-magnitude diagram. It is possible to extend the method to use
a distribution in absolute magnitude that is asymmetrical around the main se-
quence, in order to consider undetected unresolved binaries within the method.

As mentioned in Sect. 6.7, a lack of quality radial velocity data for Hip-
parcos Pleiades stars limits the application of the method in fitting the full
three-dimensional kinematics of the open cluster. This is expected to change
when Gaia comes to fruition, because all stars with GRV S < 16 will have radial
velocity information from the on-board radial velocity spectrometer. Addition-
ally, very high quality radial velocities for stars in more than 100 open clusters
will become available through the Gaia ESO Survey (Gilmore et al., 2012),
expanding the scope of the method’s application to clusters at much greater

2The discrepancy is however still there, and it is not clear if this is due to a problem in
the Hipparcos data or in the stellar models. The problem is still under debate.
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distances.
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7
Error correlations in Gaia

Due to the very large number of stars which will be observed, there will be
many cases where large numbers of Gaia parallaxes can be averaged in order
to find very precise estimates of the mean distance to certain groups of objects,
as will be the case, for example, in studies of open clusters.

However, the precision of these mean distances can be reduced by the error
correlations in the Gaia data. The idea of error correlations has been suggested
as having a real and measurable effect in Gaia’s predecessor, Hipparcos (Lin-
degren, 1988). In the most extreme case, work such as Narayanan & Gould
(1999) assert that error correlations are responsible for the so-called Pleiades
problem, where the derived distance to the Pleiades open cluster is around 10%
closer from methods based on the Hipparcos data (e.g. van Leeuwen & Hansen
Ruiz, 1997) than the distance obtained by other methods (e.g. Pinsonneault
et al. (1998), Robichon et al. (1999b), Stello & Nissen (2001)).
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A complete re-reduction of the Hipparcos raw data by van Leeuwen (2007),
lead to a revised catalogue with error correlations reduced by up to a factor
of 10. Distance estimation to the Pleiades using the new data in Sect. 6.8
and by van Leeuwen (2009) show a slight change in the mean distance, but
not enough to reconcile the two groups. The method used to construct the
new Hipparcos reduction from the raw data was similar to that used by Gaia’s
Astrometric Global Iterative Solution (AGIS).

In Sect. 7.1, we summarise the concept of error correlations, and provide a
method to test the effect of error correlations in Gaia. Then, we apply this
method to two important case studies, a simulated open cluster in Sect. 7.3,
and the simulated Large Magellanic Cloud (LMC) in Sect. 7.4. Conclusions
are given in Sect. 7.5.

7.1 Basic description

Gaia will repeatedly measure the position of numerous stars, and will use this
position information to fit a five parameter astrometric solution, including the
parallax, for each star observed. The observed position of a star in each transit
(observation) will be effected by observational errors such that:

αobserved = αreal + εα (7.1)

where α is the position and εα the random error caused by various real-world
observational effects.

For two stars observed close together on the sky, the error will be made
up of two components, a random component and a component which will be
common to both stars, here called the correlated or common error. For a
measurement of the positions of these two stars, the observed position of each
is a combination of these random and common errors:

αobserved = αreal + εrandom + εcommon (7.2)
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The common error can be caused for example by a slight inaccuracy in
the Gaia satellite attitude determination, or the measuring of the basic angle
separating Gaia’s two telescopes, which will equally effect all stars observed
within the same field of view.

Looking at any one star alone, the effect is present yet undetectable, and
the formal error on the observations is the standard combination of both the
random and common error:

σtotal =
√
σ2
random + σ2

common (7.3)

However when looking at many stars, as would be the case of an open clus-
ter, the common component of the error in the averaging of many individual
measures can not be reduced by the square root of the number of stars, as
would be the usual case for a random error. Because the common error is an
effect present at an individual transit level, we simulate correlated errors for
individual Gaia transits of an open cluster, and then from the obtained posi-
tion information derive an estimate for the parallax of each star. We take the
mean of the parallax measurements of many stars in an attempt to obtain the
mean parallax of the open cluster, and observe how the presence of a common
error between stars effects the convergence on the real value.

7.2 Method

Gaia transit data contains along and across scan positions in the Gaia focal
plane (see Jordi et al. (2010) for details of the Gaia focal plane), transit an-
gle, observation time, and parallax factor. From this transit data, the five
astrometric parameters are obtained using a Minimum Least Squares fit. The
method is similar to that employed by the Gaia Data Processing and Analysis
Consortium (DPAC), the group tasked with the reduction and processing of
the Gaia data. The five astrometric parameters, (α, δ, µα, µδ, $), are the po-
sition, proper motion and parallax for each star. The exact method for fitting

161



the astrometric parameters to the transit data (as an approximation of AGIS)
is given below:

1. For each transit of every star, the along scan CCD position, AL, and the
formal error on the along scan position, σAL, are used to calculate the
weighted parameter:

ALweighted = AL/σAL (7.4)

2. For each transit of every star the vector P is constructed from the posi-
tion angle θ, the parallax factor F$ and the time t:

P =


sinθ
cosθ
F$

tsinθ
tcosθ

 (7.5)

3. The vector P is weighted by the along scan error:

Pweighted = P/σAL (7.6)

4. A least squares fit is obtained using the QR decomposition of Pweighted,
solving for the five parameters.

5. The solution is a five parameter matrix, representing the five astrometric
parameters (α, δ, µα, µδ, $).

For this study, Gaia transit data is simulated using the Gaia Object Gen-
erator (GOG) (Luri et al., 2014). The GOG transit data already contains
observational errors due to CCD centroiding errors (detailed in Sect. 7.2.1).
An additional error is included on top of this, aiming to simulate the so-called
Calibration Noise (detailed in Sect. 7.2.2).
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7.2.1 Single transit astrometric error model

As mentioned previously, Gaia transit data contains along and across scan
positions in the Gaia focal plane, transit angle, observation time, and parallax
factor. Below we summarise how GOG simulates each component, including
the formal error on the position:

Local plane coordinates are a localised coordinate system defined to simplify
computations of position which would require satellite attitude, calibration and
orbital data. These local coordinates defined tangentially on the plane of the
sky are further simplified by transforming from the celestial plane coordinates
to CCD scan coordinates w and z.

The error for the average of a CCD row transit follows the expression:

σw =
ση√
n

(7.7)

σz = pr
ση√
n

(7.8)

where n is the along scan number of CCDs (typically 9) and pr is the re-
lation between the across scan and along scan pixel sizes (pr = 3). For both
expressions we have used the centroid positioning error, ση, whose calculation
uses the Cramer Rao lower bound in its discrete form, which defines the best
possible precision of the Maximum Likelihood centroid location estimator.

When the position of a star is obtained from a CCD image, its apparent
position is shifted with respect to its mean position due to the parallax, e.g..:

α = αmean +$fα (7.9)

δ = δmean +$fδ (7.10)

where f is the parallax factor, and $ is the parallax. For any given obser-
vation, it is possible to calculate the parallax factors, as they do not depend

163



on the parallax itself.
The parallax factors for the equatorial coordinates are computed following

expressions from Green (1985) (with a correction on a sign in the fδ expression
due to a book error):

fα =
1

cosδ
(Xsinα− Y cosα) (7.11)

fδ = Xsinδcosα + Y sinαsinδ − Zcosδ (7.12)

where (X, Y, Z) are the coordinates of the barycentric position of the ob-
server, Gaia in our case (obtained from the satellite ephemeris).

Using the Gaia Model simulation time-scale and the attitude the transit
scan angle θ is computed. The respective fw and fz parallax factors for the
local plane coordinates are:

fw = fαsinθ + fδcosθ (7.13)

fz = −fαcosθ + fδsinθ (7.14)

7.2.2 Correlation noise error models

Correlation noise has optionally not been included in the GOG simulation,
and so is added manually here. To find the calibration noise per transit, the
calibration noise per CCD is taken, as a function of magnitude, from the Gaia
Parameter Database, and is divided by

√
9 to take into account that there are

9 CCDs in a row of the Gaia focal plane.
This correlation noise is assumed to be made up of four main components1:

the basic-angle measurement error, itself composed of 0.5 µas basic-angle mea-

1Values are taken from: ’Science Performance Budget Report’, EADS-Astrium, 25 Febru-
ary 2011, GAIA.ASF.RP.SAT.00005, issue 5, revision 0. The values are also published in
the Gaia Parameter Database.

164



Figure 7.1: The error in a single transit along scan position from photon noise (green) and
from calibration noise (blue). The y axis is cut at 700 for clarity, but the AL centroiding
error continues much higher.

surement error and 0.3 µas basic-angle measurement efficiency error; the at-
titude error induced by high-frequency attitude disturbances at 3.4 µas and
the residual attitude-reconstruction error at 3.1 µas; the residual geometric-
calibration error, which is assumed to be 0.3 µas; and a residual chromaticity-
calibration error, assumed to be 0.3 times the end-of-mission random parallax
error. A breakdown of the error contributions for some example apparent
magnitudes is given in Table 7.1. The comparison between the photon noise
and the total calibration error is shown in Fig. 7.1.

7.2.3 Application

Two cases are considered, one with correlation and one without:

1. With correlation, all stars are assumed to be within the correlated
area. There is no spatial dependence on the effect. All stars are assumed
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XXXXXXXXXXXXComponent
G 6 8 10 12 14 16 18 20

Photon1 75.91 181.14 81.66 67.92 164.26 421.11 1146.57 3848.92
Attitude2 4.59 4.59 4.59 4.59 4.59 4.59 4.59 4.59
Basic angle2 0.58 0.58 0.58 0.58 0.58 0.58 0.58 0.58
Geometry3 3.09 3.09 3.09 3.09 3.09 3.09 3.09 3.09
Residual chromaticity-calibration3 17.20 17.07 17.39 17.43 21.55 40.56 97.44 299.43

Table 7.1: The error from the main error sources evaluated at different apparent G magnitudes. The different contributions to
the error can be either unique or common to many stars. Each row is labelled with a superscript: 1: unique to each star, 2:
common to all stars in FOV, 3: common to all stars in a single CCD. As stars pass down a row of CCDs in the focal plane,
the geometry error (3) is equivalently common to all stars passing down a CCD row in the focal plane. These simulated results
are for the nominal Gaia mission only, and can change due to real-world effects causing changes away from Gaia’s predicted
performance. The errors are per transit. Values are taken from: ’Science Performance Budget Report’, EADS-Astrium, 25
February 2011, GAIA.ASF.RP.SAT.00005, issue 5, revision 0. The values are also published in the Gaia Parameter Database.



to be observed in each transit. Holl & Lindegren (2012) and Holl et al.
(2012) show that correlation is at a maximum with angular separation
of less than 0.1 deg, and reduces with increased separation until reduced
by around a factor of five beyond 0.7 deg.

The effect of attitude and basic angle errors are common for all stars
within the field of view, therefore for each transit a random change in
observed position is added to all of the stars. The change in position is
the same for all stars (direction, size), and for each transit is drawn from
a random Gaussian distribution with mean zero and standard deviation
of the sum of the basic angle error and the attitude errors above (added
in quadrature).

The effect of the geometric and chromaticity calibration errors is com-
mon to all stars in a single CCD. As stars always transit all CCDs in
a row, the effect of the geometric calibration error can be thought of
as being common to all stars which are in the same CCD row (after a
division by

√
9 to take into account the number of CCDs per row). To

simulate this effect, for each transit each star is randomly assigned a
CCD row (i.e. one of 7 groups) and all stars within each row are sub-
ject to a change in observed position drawn from a random Gaussian
distribution with mean zero and a standard deviation of the sum of the
geometric calibration error and the chromaticity calibration error given
above (added in quadrature). Therefore for each transit stars have a
common error with other stars in their CCD row, but are independent
from other rows. Row selection is random for every transit.

The correlated error is therefore made up of three components, a ran-
dom error independent to each star (from GOG, due to CCD centroid-
ing error), a random error common to all stars in a CCD row (geome-
try+chromaticity calibration), and a random error common to all stars
(BAM+Attitude).

2. Without correlation, a random change in the observed position is
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applied to every star in each transit. The random change in observed
position is drawn from the a random Gaussian distribution with standard
deviation equivalent to the combination of the various effects above, but
is a unique draw for every star and for every transit. Therefore the error
in each transit is different for each star.

Given both sets of transit data (one with correlated errors and one without),
the minimum least squares method given above is used to obtain the observed
parallax for each star. Then the mean parallax, $, to the whole cluster is
calculated using this observed data, once for each data set.

The difference between the two measurements $withCor−$noCor is calculated
using the mean cluster parallax with and without correlations. This difference
is the effect of the correlated errors. The residual between the with correlation
and without correlation cases does not decrease with the inclusion of more
stars, as can be seen in Fig. 7.2. In this figure, it is clear that the random
error is large with few stars in the sample, and decreases with the square root
of the number of stars through the inclusion of more stars in the sample. The
mean tends towards the true value with the inclusion of more stars, however
the residual due to the common error can not be averaged away because it
is common to all stars. Including even thousands of stars does not decrease
this effect. Therefore the effect of correlated errors can be thought of as an
additional random error on the mean calculated from correlated observations.

By taking the GOG transit data, and repeating the process many times
(adding random and correlated errors, finding the mean parallax for each case
and taking the difference between the two), the distribution of the correlation
values is obtained. Assuming that the effect follows a Gaussian distribution,
the mean and standard deviation tell us about the size and type of the effect
of our correlated errors.
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Figure 7.2: Filled circles are the mean cluster distance with increasing number of stars
included in the sample. For clarity, a point is drawn for only one in ten stars. The coloured
lines around the mean are the one sigma error on the mean. The parallax and residual are
given in mas. The grey line at 7.69 is the true mean parallax.
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7.3 Open clusters

To test the impact of correlated errors in open cluster distance estimation,
transit data for the a Pleiades-like open cluster has been simulated with GOG.
This data contains along and across scan positions, transit angle, observation
time, and parallax factor. The simulated cluster contains roughly 3000 mem-
bers and covers an area of around four square degrees, although all stars are
assumed to be in the correlated area for this exercise, corresponding to a worst
case scenario. The true mean distance to the open cluster is taken as 130 pc.

By applying the method outlined in Sect. 7.2, the effect of correlated errors
has been evaluated. As the effect is a random variable, its distribution is found
by repeating the inclusion of correlated errors many times. The mean is found
to be close to zero, and the standard deviation is 0.7 µas, as seen in Fig. 7.3.

The effect can be thought of as being an additional error on the mean, on
top of the one derived from the individual error of each star. This error can
not be reduced by including a greater number of stars unless they come from
a larger, uncorrelated area.

7.4 LMC

The effect of correlated errors is limited to stars which are observed simulta-
neously, and is therefore only present over angular separation of less than 1
degree. From the results for fitting the LMC distance given in Sect. 5.4, it
is clear that the precision of less than 0.1 µas as achieved above will not be
possible in a compact region with strongly correlated errors. The error due to
correlation (found to be at 0.7 µas in Sect. 7.3) constrains the determination
of the assumed 20.8 µas mean distance to the LMC to being determined with
a accuracy no better than 3%.

However, as can be seen in Fig. 5.5, the LMC is extended over several
degrees in each direction. The effect of correlated errors, being derived from a
random process, is itself a random variable, with mean zero. By taking several
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Figure 7.3: Normalised histogram of the residual $withCor − $noCor found for 500 tests,
with a fitted Gaussian distribution.
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uncorrelated regions, the effect is reduced. As the LMC covers approximately
90 square degrees on the sky, the effect of correlated errors will be reduced by a
factor of around 9.5, reducing the size of the correlated error to be comparable
with the precision of the no-correlation case above.

While a global mean distance estimate is therefore possible using Gaia data,
it is known that the LMC is highly inhomogeneous, with different variable
star types and stellar populations occupying different regions. As the effect
of error correlations will be consistent, the relative distances of the different
populations can be explored using methods such as that presented in Sect.
5.4. However the absolute distance to sub-populations in the LMC, such as
Cepheids which are constrained to the central bar region of the LMC, will be
limited in the possible accuracy due to correlation effects.

In Sect. 5.4.3, tests have been made in applying the distance determination
method from Sect. 5.4 to the LMC area divided into a grid on the sky. Doing
so allowed the estimate of mean distances to the LMC area in different parts
of the sky, and the precision was found to be sufficient to allow reconstruction
of the angle and orientation of the LMC disk. However, after the inclusion
of the effect of error correlations, the small area of the required grid means
that the correlated errors play a significant role and detail of the LMC disk
orientation is lost.

7.5 Conclusions

In Gaia there will be abundant cases where many parallax measurements will
be used to obtain average properties. By using a statistical approach, such
as the one outlined in Sect. 5.4, it is possible to obtain an improvement in
precision over the direct calculation of the mean, and to avoid many statistical
biases. Correct statistical treatment is essential, else the very high precision
of Gaia can be lost through untreated observational biases or poorly known
posterior corrections.

The number of stars which Gaia will observe provides the opportunity to
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obtain very precise distances. For example, observed members of open clusters
could number as high as thousands of stars per cluster. In these cases, prob-
lems of error correlations can limit the possible accuracy of mean properties.
Taking stars from a wide area will negate the effect, however this is not always
possible. In compact cases (less than a few square degree), the additional
component in the error due to correlations should be included in the formal
error propagation.

If µ is the mean parallax, ρ is the correlation between two stars, and σ$ is
the formal error on the parallax, the formal variance on the mean, σµ, is:

σ2
µ = E

[
µ2
]

(7.15)

σ2
µ = E

[(∑
$i

)2
]
/n2 (7.16)

σ2
µ =

∑
E
[
$i.$j

]
/n2 (7.17)

σ2
µ = (nσ2

$ + (n2 − n)ρσ2
$)/n2 (7.18)

So, for large n, the precision on the average parallax is

σµ ∼ σ$
√

(1/n+ ρ) ∼ σ$
√
ρ asymptotically (7.19)

Assuming an end-of-mission 10 µas parallax precision for a bright star in
Gaia, and taking the expected per transit correlation error given in Sect. 7.2
and dividing by

√
80 for the mean number of transits, we obtain an upper

limit on the formal error of 2 µas, in accordance with Fig. 7.3. In most cases
of course the systematics will be much smaller, and are within the expected
range for Gaia performance.

This does however shows that, as soon as n > 1/ρ, having more stars is not
beneficial. With ρ = 0.05, having more than only some tens of bright stars in
a compact area does not help. This number of stars is very small for Gaia,
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which is capable of observing 106 stars per square degree in compact regions.
This puts a strict limit on the accuracy which can be obtained using Gaia

over small regions of the sky. The formal error on a mean distance estimate,
obtained from the variance in the measurements though the standard methods,
will not contain the correlated part and may therefore state high precision
regardless of the accuracy limit.

Taking stars from distinct regions, such as taking parallax measurements for
Cepheid variable stars from all over the sky in order to calibrate the Cepheid
period-luminosity relation, poses no theoretical limit in the achievable accu-
racy. In compact cases such as open and globular clusters, and external re-
solved galaxies, the effects of correlated errors must be taken into account.

The concepts covered here will be subject to further investigation.
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8
Conclusions

The aim of this thesis was to develop and prepare a set of tools for luminosity
calibration with the Gaia data. To the uninitiated this would appear easy:
invert the parallaxes of one thousand million stars to obtain the largest ever
compilation of distance measurements, and combine these distances with ap-
parent magnitudes to obtain absolute luminosities. As we have seen in the
introductory chapters, it is possible to do much better through statistical in-
ference of derived quantities, whereby biases are avoided and the precision of
the result is improved.

Within this thesis we have seen several examples of how the straightforward
approach leads to inaccurate or misleading results. For open clusters we have
seen that the inverse of the mean of the parallax ( 1

<$>
) progressively diverges

from the true value with increasing observational errors. For the LMC we have
seen that the mean of the inverse of the parallax of the Cepheid population
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gives 111 kpc while the true value was 48 kpc. Such examples validate the
initial argument that simply inverting the parallax to obtain a distance is the
incorrect solution. Of course, when using the real Gaia catalogue to obtain
distances and absolute magnitudes there will be no possible comparison with
the ‘true’ values or in many cases even with results from other missions. A
consumer of the Gaia data must be sure that they are not committing such
mistakes, otherwise the benefit of the µas precision of Gaia (its main selling
point and mission justification) will be lost.

This thesis therefore presents a method which can be used to successfully
obtain distances, absolute magnitudes, and other information of interest (space
velocity, isochrones, etc.) in a way which utilises the full range of available
data to optimise the result. The method was introduced for a simplified case
and then progressively amended and reformed for several key problems in the
field of the distance scale and luminosity calibration. The resulting statistical
methods have been implemented and tested so as to be available for use with
the release of the Gaia data. However, the additional benefit of the formu-
lation used here is its adaptability, and by simply extracting a model from
the presented case studies and replacing it with another, the method can be
applied in a range of cases which have not been covered here. Calibration of
the main sequence, the tip of the Giant branch, or the distance to some spe-
cific structure in the Milky Way can all be possible with the Gaia data, and
the tools developed during the course of this thesis can be applied to several
problems beyond the presented case studies.

The future legacy of this thesis is therefore not only in applying the derived
methods to real Gaia data, but (similarly to work undertaken with Hipparcos)
keeping the justification and rationale of the thesis in the collective conscious-
ness of potential users of parallax data to ensure that the Gaia data can be
utilised to its full potential.

In order to fully investigate the capabilities of Gaia for luminosity calibration
and the potential caveats which would need to be taken into consideration, it
has been necessary to explore various aspects of the Gaia mission. The clear
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starting point was to determine and quantify the expected scientific output
and the contents of the catalogue. By working with data from the Gaia sim-
ulator for the mock end-of-mission catalogue, it has been possible to get an
in-depth view of both the contents of the catalogue and the expected precision
of its contents. Not only will this analysis of the mock catalogue serve as a
useful reference for the scientific community involved in preparing for scientific
exploitation of the real data, but the analysis has been essential within the
thesis for deciding which applications for luminosity calibration to focus on
throughout the remainder of the thesis. For example, the expected number
and precision of parallax measurements for Cepheid and RR-Lyrae variable
stars has highlighted the potential for calibration of the period luminosity and
period-luminosity-metallicity (PLZ) relations, and the need for a method to
do so. Furthermore, the initial analysis of the mock catalogue has also made
apparent the potential limitations of the Gaia data. Following from the pre-
vious example, it was clear that the precision on the metallicity may not be
sufficient for a RR-Lyrae PLZ relation calibration, and therefore combination
with other datasets would be required.

From a technical point of view, this initial analysis of the mock Gaia cata-
logue provided much needed familiarisation with the format and the quantity
of the expected Gaia data. Extracting subsets of interesting information from
the vast quantities of data in the several terabyte catalogue proved an initial
challenge, and the incentive to learn crucial computing and data mining skills.
The contents of the catalogue itself then became the ideal testing ground for
the various applications of luminosity calibration which form the main body
of this thesis.

During this thesis it has been necessary to perform detailed study of specific
aspects of the inner workings of the Gaia satellite, beyond the global analysis
of the expected Gaia catalogue. After returning to the Hipparcos ‘distance
problem’ during the application of the method for open cluster distance de-
termination, it was clear that a discussion of error correlations was necessary.
As highlighted by the recent VLBI observations from Melis et al. (2014) being
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again contra the Hipparcos distance estimate, it is clear that there is still an
open question about cause of the discrepancy (either a problem in Hipparcos
or in the stellar evolution models). As the basic principle of observation is the
same for Hipparcos and Gaia, it was clear that a more in-depth study of error
correlation effects was required, specifically related to the calibration of dis-
tances. This study drew from several other topics from this thesis, using GOG
to simulate transit data and using simulated open clusters and the LMC to
test the possible extent of resulting correlation effects. The results quantify a
minimum possible precision for deriving mean quantities from Gaia catalogue
data, and provide a good estimate of error correlation effects so that they can
be clearly considered when working on small angular scales. While beyond
the scope of this thesis, it would be possible to take a similar approach to the
Hipparcos data, by using the raw transit data for the Pleiades stars to recon-
struct error correlation effects in a realistic manner. Such an approach can
be taken as part of future work, and if combined with the robust method for
open cluster distance determination for the distance to the Pleiades from this
thesis applied to real Gaia data, the question of the distance to the Pleiades
can be settled conclusively.

In light of the results of Ch. 7, it should be noted that it will be necessary
to modify the method for open cluster distance determination given in Ch. 6,
in cases where correlations may be important. For the given case studies of
the Hyades an Plieades, it is unlikely that correlated errors will be significant
in Gaia data, due to the fact that these nearby clusters cover large areas of
the sky. The same can not be said for more distant clusters, which can appear
much more compact. In such cases, the covariance matrix of the measurements
between stars should be taken into account explicitly within the method in
order to correctly account for correlation effects.

One major potential criticism of this thesis is that while Gaia is the core
focus of the work, Gaia data is not yet available. This has lead to extensive use
of the aforementioned mock catalogue and other simulations. Of course, no
new discoveries can derive from luminosity calibration using simulated data,
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but due to the complexity of the mathematical methods and their implemen-
tation in functioning algorithms, it is essential to undertake rigorous testing
using simulated data with known inputs in order to ensure that mistakes have
not been made. Where possible, this has been followed up with applications
to real data (e.g. Hipparcos, OLGE, EROS, VMC), which has lead to inter-
esting discoveries (e.g. direct evidence of mass segregation in the Pleiades; a
new RR-Lyrae PLZ relation in the LMC). For all of the methods presented
in this thesis, the completed mathematical derivations and their respective
implementations are ready to be applied when the Gaia data is released.

The future legacy of this thesis is threefold. First, is the personal knowledge
and experience which I have gained in astrophysics, statistics and computer
science which can be utilised in future projects related to Gaia science. Specific
skills such as working with massive datasets, extracting and sorting complex
information and visualising results in a clear and concise manner, will all
compliment the specific statistical experience gained and will surely be of great
use when working on luminosity calibration with the real Gaia data upon
release. The second aspect is in the potential extension and application of the
specific tools outlined in the previous chapters. As seen, the models defined
for Bayesian methods can increase in complexity indefinitely. For example the
spatial distribution of Galactic stars can be defined as an exponential disk, but
can be extended to include thick and thin disk components, the halo, the bulge,
the spiral arms and other major features. Variable star PL relations, defined in
Ch. 5 as a linear PL relation, can include dependences on metallicity, colour,
or others, where there is a physical justification for doing so. The relations
could be non-linear, or contain a dog-leg. In fact, several alternative models
could be implemented and compared using quantitative statistical methods to
accept or reject conflicting models and choose the optimal description of the
observational data. In future applications, and with the very high precision
of the Gaia data, some of the methods in this thesis may need extending, or
tailoring to specific cases and situations.

The third aspect, which incorporates the previous two, is the potential for
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the construction of a general tool for extraction of derived quantities such
as distance and absolute magnitude from the Gaia catalogue. As the Gaia
catalogue is being eagerly awaited for by scientists working in diverse fields
of astrophysics, many will be tempted to invert the parallax of their object
of interest. The correct extraction of distance information from the Gaia
catalogue can be time consuming, and the correct methodology is not always
followed. By utilising the experience gained in this thesis to make a general
tool which would be useful to a large user base, the methodology developed in
this thesis can be made easily accessible. This would have strong implications
to the eventual ease-of-use of the Gaia catalogue, and has the potential to
result in a tangible improvement on the core output of the Gaia mission.
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