The Analysis of Gaia capabilities to trace the dynamics of the Galactic warp

Hoda Abedi (ICCUB-IEEC)
Francesca Figueras(ICCUB-IEEC)
Luis Aguilar(UNAM)
Merce Romero-Gomez(ICCUB-IEEC)

(Credit: Leo Blitz/Carl Heiles/ Evan Levine-UC Berkeley)

Can Gaia detect the kinematic signature of the warp?

Procedure

- \diamond Simulate the Galactic warp (80×10^6 test particles)
 - 3D Potential, warp geometry, adiabatic warping
- Check for statistical equilibrium
- Map our model to Gaia observable space
 - Apply Drimmel extinction model
 - Add Gaia errors
- Check the significance level of the warp kinematics as seen by Gaia

The geometric model of the warp

To warp the system, we bend the potential of the disc using a simple geometry transformation.

$$\Psi(R; R_1, R_2, \psi_2, \alpha) = \Psi_{\text{max}}((R - R_1)/(R_2 - R_1))^{\alpha}, \qquad R > R_1$$

The tilt is applied beyond R_1 . The resulting warp is such that the tilt angle increases as a power law whose exponent is α and such that at R_2 it has a value equal to Ψ_2 .

Map to Gaia observable space using Drimmel extinction law

G < 20, Error in parallax < 20%, $G_{RVS} < 16$

As a test: A circular orbit at r=11 kpc

By looking at W component of heliocentric velocity of stars

Observational constrains added, no errors

Gaia error and constrains added

• By looking at the proper motions towards Galactic latitude(μ_b)

From simulation

Observational constrains added ,without Gaia errors

Gaia error and constrains added

Next steps

 To look for kinematic signatures with and with out statistical equilibrium in the new sample that mimics the MW.

To analyze deeply the space of Gaia observables

Thank you!