# 3D study of the Gould Belt

N. Huélamo (CAB), C. Eiroa (UAM)

### The Gould belt



Ring of stars including a large number of young clusters and star forming regions

### The Gould belt



Ages & Distances of some regions in the GB

| Association | Distance (pc) | Age (Myr) |
|-------------|---------------|-----------|
| Rho Oph     | 130-160       | <         |
| Taurus      | 140           | 1-3       |
| Lupus       | 140-200       | 1-5       |
| Serpens     | 260           | 2         |
| Orion       | 450           | 1-5       |
| UCL         | 140           | 15        |

### Young late-type stars in the Gould Belt

Gould Belt: suitable place to study star formation

- fundamental parameters of young stars
- PMS evolution
- environment dependence
- Distances: Hipparcos measurements. Large uncertainties for d > 100pc.

Studies consider a single distance for all the members. No info about the depth of the SFRs.

 The 'primary' determination of ages relies on comparisons of stellar models or isochrones with the best-available data, in particular luminosity, effective temperature and abundances, on individual stars or stellar groups

### Young late-type stars in the Gould Belt

-Distance

Young objects:

- disks
- Variability
- Extinction law



Uncertainties in both axes → uncertain stellar parameters (Hillenbrand 2009)

### Young stars in the Gould Belt

#### Young stars in Orion



Age Spread in HR diagrams

- Are the apparent luminosity spreads real?
- Do they indicate true age spreads?
- Can we use them to infer star formation histories?

### Gould Belt & GAIA: objectives



#### For each selected region:

- 1. Build HR diagrams with small uncertainties: precise stellar parameters
- 2. Spatial (3D) distribution of stellar population and kinematics
- 3. Velocity and age spreads

## Gould Belt: Ground-based data+Gaia



Both samples

Spatial distribution of the young stellar population as a function of different stellar parameters, e.g. mass, CS disks

### Working plan

#### Short term

- Selection of suitable regions in the Gould Belt  $(A_v,$  different environments)
- For each region:

Selection of candidate members: photometry

Public Catalogues and Archived Observations

- S. Mejido & C. Eiroa, (UAM)
- N. Huélamo (CAB)
- A. Mora (GAIA, ESAC)

### Working plan

### Mean and long term

Spectroscopic characterization of candidate members:

- Youth indicators: Lithium
- T<sub>eff</sub>, metallicity
- Accretion: H alpha
- Radial velocities with precision better than 1 km/s (velocity dispersions in SFR can be  $\sim 1-2$  km/s)

### Working group

- D. Barrado, H. Bouy, E. Solano, B. Montesinos, A. Moya (CAB)
- C. Eiroa, S. Mejido (UAM)
- A. Mora (GAIA, ESAC), B. Merín (Herschel, ESAC)
- C. Melo (ESO)

GREAT: Open Clusters and Young Associations

- Sofia Randich & David Barrado (star formation)