Gaia and the Loca Dark Matter Density

Hamish Silverwood

ICC, University of Barcelona

🕑 @hsilver_

Sofia Sivertsson OKC Stockholm Justin Read University of Surrey Gianfranco Bertone GRAPPA, University of Amsterdam

arXiv:1708.07836 arXiv:1507.08581

Why do we care about local DM density?

WIMP, sterile neutrino & axion direct detection via nuclear/electron recoils (e.g. XENON1T, LUX)

$$\frac{\mathrm{d}R}{\mathrm{d}E} = \frac{\rho_{\odot}}{m_{\mathrm{DM}}m_{\mathcal{N}}} \int_{v > v_{\mathrm{min}}} \mathrm{d}^{3}v \,\frac{\mathrm{d}\sigma}{\mathrm{d}E}(E,v) \,v \,f(\vec{v}(t))$$

Indirect Detection through Solar Capture and annihilation to neutrinos (e.g. IceCube, Antares, KMSNeT, Super-

$$C^{\odot} \approx 1.3 \times 10^{21} s^{-1} \left(\frac{\rho_{local}}{0.3 \text{GeV cm}^{-3}} \right) \left(\frac{270 \text{km s}^{-1}}{v_{local}} \right) \times \left(\frac{100 \text{GeV}}{m_{\chi}} \right) \sum_{i} \left(\frac{A_i (\sigma_{\chi i,SD} + \sigma_{\chi i,SI}) S(m_{\chi}/m_i)}{10^{-6} \text{pb}} \right)$$

Relic Axion Searches via conversion to photons (e.g. ADMX)

$$P = \frac{2\pi\hbar^2 g_{a\gamma\gamma}^2 \rho_{\rm DM}}{m_a^2 c} \cdot f_\gamma \cdot \frac{1}{\mu_0} B^2 V_{nlm} \cdot Q$$

 Scans of theoretical
 parameter space, eg Supersymmetry

Why do we care about local DM density?

Scans of theoretical parameter space, eg Supersymmetry

MSSM9 scans, Cabrera+ 2015, 1503.00599v2

How do we measure the local DM density?

 Fit global model to global measurements, extrapolate local value: powerful, but we have to assume global properties of the halo. E.g. rotation curves, distribution function modelling

e.g. Dehnen & Binney 1998; Weber & de Boer 2010; Catena & Ullio 2010; Salucci et al. 2010; McMillan 2011; Nesti & Salucci 2013; Piffl et al. 2014; Pato & locco 2015; Pato et al. 2015; Binney & Piffl 2015,

 Local model and local measurements: larger uncertainties but fewer assumptions
 e.g. Jeans 1922; Oort 1932; Bahcall 1984; Kuijken & Gilmore 1989b, 1991; Creze et al. 1998; Garbari et al. 2012; Bovy & Tremaine 2012; Smith et al. 2012; Zhang et al. 2013; Bienaymé et al. 2014, Xia et al. 2016

Local DM from Vertical Oscillations

 Gives a measure of the total mass in the plane pulling the star down again

e.g. Jeans 1922; Oort 1932; Bahcall 1984; Kuijken & Gilmore 1989b, 1991; Creze et al. 1998; Garbari et al. 2012; Bovy & Tremaine 2012; Smith et al. 2012; Zhang et al. 2013; Bienaymé et al. 2014, Xia et al. 2016

H. Silverwood, REG 2018 Barcelona

Local Jeans Modelling - One Dimensional

z-Jeans equation

Dark Matter Baryon Tracer Velocity averages density density density $\overline{\mathbf{V}_{R}\mathbf{V}_{z}}$, 3 \mathbf{V}_{z}^{2} , 3 v_3 ρ_{DM3} ρ_{B3} $\overline{\mathbf{V}_{R}\mathbf{V}_{z}}$, 2 $\overline{\mathbf{V}_{z}^{2}}$, 2 ρ_{B2} ρ_{DM2} v_2 $\overline{\mathbf{V}_{R}\mathbf{V}_{z}}, 1$ $\overline{\mathbf{V}_{z}}^{2}, 1$ ρ_{B1} ρ_{DM1} v_1 V_RV_Z , 0 V_Z^2 , 0 ρ_{DM0} ρ_{B0} \mathcal{V}_0 $V_{R}V_{Z}$, -1 V_{Z}^{2} , -1 **PDM-1 PB-1 V-1** $V_R V_Z$, -2 V_Z^2 , -2 ρ_{DM-2} ρ_{B-2} ν_{-2}

Local Jeans Modelling - Two Dimensional Possible with Gaia DR2 Solve both R & Z-Jeans eqns.

R-Jeans equation

Jeans Equation

• Start with the R- and z-direction Jeans Equations, derived from the Collisionless Boltzmann Equation.

$$\begin{array}{ll} \mathsf{R}: & 0 = \frac{\partial(\nu\,\overline{v_R})}{\partial t} + \frac{\partial(\nu\,\overline{v_R^2})}{\partial R} + \frac{1}{R}\frac{\partial(\nu\,\overline{v_Rv_\phi})}{\partial \phi} + \frac{\partial(\nu\,\overline{v_Rv_z})}{\partial z} + \frac{\nu}{R}\left(\overline{v_R^2} - \overline{v_\phi^2}\right) + \nu\frac{\partial\Phi}{\partial R} \\ \mathsf{Z}: & 0 = \frac{\partial(\nu\,\overline{v_z})}{\partial t} + \frac{\partial(\nu\,\overline{v_Rv_z})}{\partial R} + \frac{1}{R}\frac{\partial(\nu\,\overline{v_\phi v_z})}{\partial \phi} + \frac{\partial(\nu\,\overline{v_z^2})}{\partial z} + \frac{\nu}{R}\overline{v_Rv_z} + \nu\frac{\partial\Phi}{\partial z} \\ \mathsf{0} \text{ from dynamical equilibrium} & \mathsf{0} \text{ from axisymmetry} \end{array}$$

Integrated Jeans Equation

 Integrate z-Jeans equation to avoid additional noise from differentiating binned data:

MODELS

Tracer Density ϕ -velocity mean **Rz-velocity mean Baryon distribution Dark Matter** distribution 7

> **R-velocity mean z-velocity mean**

DATA

E E

BAYESIAN

Tracer Densityφ-velocity meanRz-velocity meanBaryon distributionDark Matterdistribution

R-velocity mean z-velocity mean

SDSS G-dwarf Analysis

Sivertsson et al. 1708.07836

Stellar kinematics data of 16,000 SDSS/SEGUE G-dwarfs from Budenbender+ arXiv: 1407.4808.

Two populations:

- a-young (high metallicity, thin disk)
- a-old (low metallicity, thick disk)

SDSS G-dwarf Results

- α-young (thin disc) not as sensitive to tilt term as the α-old (thick disc)
- mismatch between α-young and α-old results...

		lpha-yo Tilt	oung No Tilt	α- Tilt	-old No Tilt	Combined analysis Tilt
95% CR upper	$\begin{array}{c} {\rm GeVcm^{-3}} \\ {\rm M_{\odot}pc^{-3}} \end{array}$	$\begin{array}{c} 0.59 \\ 0.016 \end{array}$	$\begin{array}{c} 0.57\\ 0.015\end{array}$	$0.85 \\ 0.022$	$\begin{array}{c} 0.51 \\ 0.013 \end{array}$	$\begin{array}{c} 0.48\\ 0.013\end{array}$
68% CR upper	${ m GeVcm^{-3}}\ { m M}_\odot{ m pc}^{-3}$	$\begin{array}{c} 0.53 \\ 0.013 \end{array}$	$\begin{array}{c} 0.53 \\ 0.014 \end{array}$	$0.79 \\ 0.021$	$\begin{array}{c} 0.48 \\ 0.013 \end{array}$	$\begin{array}{c} 0.43 \\ 0.012 \end{array}$
Median	${ m GeVcm^{-3}}\ { m M}_\odot{ m pc}^{-3}$	0.46 0.012	0.48 0.013	0.73 0.019	$\begin{array}{c} 0.46 \\ 0.012 \end{array}$	$\begin{array}{c} 0.40\\ 0.011\end{array}$
68% CR lower	$\begin{array}{c} {\rm GeVcm^{-3}} \\ {\rm M_{\odot}pc^{-3}} \end{array}$	$0.37 \\ 0.0098$	$\begin{array}{c} 0.42\\ 0.011\end{array}$	$\begin{array}{c} 0.68\\ 0.017\end{array}$	$\begin{array}{c} 0.44 \\ 0.012 \end{array}$	$\begin{array}{c} 0.37\\ 0.0097\end{array}$
95% CR lower	${ m GeVcm^{-3}}\ { m M}_\odot{ m pc}^{-3}$	$0.30 \\ 0.0078$	$0.35 \\ 0.0092$	$0.60 \\ 0.016$	$\begin{array}{c} 0.42\\ 0.011\end{array}$	$\begin{array}{c} 0.34 \\ 0.0091 \end{array}$

Problems with the α-old population: Disequilibria

• MW is not in equilibrium (see talks from TA and PR)

- Banik+ 2016: disequilibria generate systematic errors of 25% or more c.f. SDSS stat error ~±20%
- ... and can produce different *p* for different populations.
- Near term: use disequilibrium mocks to test impact on our method.
- In future we need to start modelling the disequilibria term and marginalising over it.

Disequilibria Modelling

Model disequilibria and non-axisymmetries and marginalise over like the tilt term.

$$\overline{v_z^2}(R,z) = \frac{1}{\nu} \int_0^z \left[\nu K_z - \frac{1}{R} \frac{\partial \left(R\nu \,\overline{v_R v_z} \right)}{\partial R} \right] dz' + \frac{C_z}{\nu}$$

$$\overline{v_z^2}(R,z) = \frac{1}{\nu} \int_0^z \left[\nu K_z - \frac{1}{R} \frac{\partial \left(R\nu \,\overline{v_R v_z} \right)}{\partial R} - \frac{\partial}{\partial t} \left(\nu \,\overline{v_z} \right) - \frac{1}{R} \frac{\partial}{\partial \phi} \left(\nu \,\overline{v_\phi v_z} \right) \right] dz' + \frac{C_z}{\nu}$$

Time Term Axial Term

- Simulations from 2011 by Silvia Garbari & Justin Read.
- Large satellite merger (~20% of halo mass), at high and low inclinations.
- Control simulation with no merger.

No merger

Low inclination merger

High inclination merger

One pi/4 phi slice

H. Silverwood, REG 2018 Barcelona

One pi/4 phi slice

R=5.5kpc R=6.5kpc R=7.5kpc R=8.5kpc R=9.5kpc R=10.5kpc R=11.5kpc R=12.5kpc R=13.5kpc

-Density Histogram--VR Heat Map--Vphi heat map-

Low incl. merger

Spirals only form in merger simulations

One pi/4 phi slice

R=5.5kpc R=6.5kpc R=7.5kpc R=8.5kpc R=9.5kpc R=10.5kpc R=11.5kpc R=12.5kpc R=13.5kpc

-Density Histogram--VR Heat Map--Vphi heat map-

High incl. merger₂₀

H. Silverwood, REG 2018 Barcelona

2D Mock Data Tests

Gaia and the LOCa Dark Matter Density DR2 will allow us to fix the radial behaviour of the tilt term and look inwards/outwards from the solar position.

Disequilibria and Axial Term:

- 16000 stars → 20% stat error
- Disequilibria \rightarrow ~25% syst error.
- We need to model and marginalise over disequilibria and nonaxisymmetries.