



### An Overview of the Gaia-ESO Survey

### C. Allende Prieto Instituto de Astrofísica de Canarias





The Gaia-ESO Survey



- Homogeneous spectroscopic survey of 10<sup>5</sup> stars in the Galaxy
- <u>FLAMES@VLT</u>: simultaneous GIRAFFE + UVES observations
- 2 GIRAFFE spectral settings for 10<sup>5</sup> stars
- Unbiased sample of 10<sup>4</sup> G-type stars within 2 kpc
- Target selection based on VISTA (JHK) photometry
- Stars in the field and in ~ 100 clusters









- Galactic phase-space substructure
- Chemical evolution
- Star migration
- Disk gradients and their time evolution
- Cluster evolution (formation, dissolution, self-polution)







### The field stars

- Mid-resolution GIRAFFE spectra ( $R\sim12,000$ ) for  $10^5$  stars to V < 20 (mostly in the Gaia RVS gap)
- GIRAFFE HR21 (Ca II IR triplet) + HR10 (~540 nm) with 10<S/N<30 to yield atmospheric param., radial velocities, limited chemistry
- UVES spectra for 10<sup>4</sup> G-type stars to V<15 with S/N>50 to yield detailed atmospheric parameters, high-precision radial velocities and 11+ elemental abundances



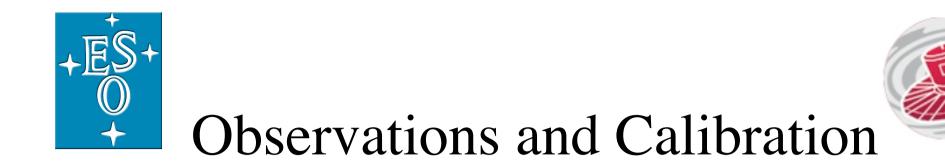




## Breakdown by population

- Bulge: bright (I~15) K-giants with 2 GIRAFFE settings at 50<S/N<100
- Halo/Thick disk: F-type turn-off stars (SDSS 17<r<19)</li>
- Outer thick disk: F-type turnoff (75%) and K-type giants at intermediate galactic latitude
- Thin disk (I~19) from 6 fields in the plane with HR21-only data (+ UVES sample)






### The cluster stars



- Cluster selection from Dias et al. (2002), Kharchenko et al. (2005), WEBDA catalogues, supplemented by exploratory program at Geneva
- Only clusters with membership information considered
- Nearby (<1.5 kpc; down to M-dwarfs) and distant clusters (giants only) will be observed, sampling a wide range in age, [Fe/H], galactocentric distance and mass
- 6 GIRAFFE settings (HR03/05A/06/14A/15N/21) down to V~19
- + UVES sample down to V~16





- Visitor mode observations -- start December 2011
- 300 nights over 5 years (~1500 pointings)
- Target selection will be largely based on VISTA VHS photometry + additional information for clusters
- ESO Archive (on-going analysis)
- Calibration fields to control/match parameter/abundance scale across surveys







### Data reduction/analysis

- Data reduction performed at Cambridge (GIRAFFE) and Arcetri (UVES) likely based on ESO pipeline
- Radial velocity derivation
- Object classification
- Spectral analysis: atmospheric parameters and abundances
- Gaia-ESO archive







### Spectral analysis

- UVES spectra of normal FGK stars
- GIRAFFE spectra of normal FGK stars
- Pre-MS and cool stars
- Hot (OBA-type) stars
- Funny things
- Survey parameter homogenization





### Consortium



- Over 300 people involved (90+ centers)
- 2 co-Pis (G. Gilmore and S. Randich)
- A steering committee
- 17 working groups







### Steering Committee

| Name          | Function       | Affiliation            | Country          |
|---------------|----------------|------------------------|------------------|
| Gerry Gilmore | Co-PI          | Institute of Astronomy | UK               |
| Sofia Randich | Co-PI          | INAF Obs Arcetri       | Ι                |
| M. Asplund    | Steering Group | MPA                    | D                |
| J. Binney     | Steering Group | Oxford                 | UK               |
| P. Bonifacio  | Steering Group | Paris                  | $\mathbf{Fr}$    |
| J. Drew       | Steering Group | Herts                  | UK               |
| S. Feltzing   | Steering Group | $\operatorname{Lund}$  | Se               |
| A. Ferguson   | Steering Group | Edinburgh              | UK               |
| R. Jeffries   | Steering Group | Keele                  | UK               |
| G. Micela     | Steering Group | Palermo                | Ι                |
| I. Negueruela | Steering Group | Alicante               | $_{\mathrm{Sp}}$ |
| T. Prusti     | Steering Group | $\mathbf{ESA}$         | ESA              |
| H-W. Rix      | Steering Group | MPIA                   | D                |
| A. Vallenari  | Steering Group | Padova                 | Ι                |





| Function                | Contributing Groups                                   | FTE/yr  | Coordinators          |
|-------------------------|-------------------------------------------------------|---------|-----------------------|
| Survey Overview         | Co-PIs                                                | 2x0.4   | Gilmore, Randich      |
| Management Overview     | Steering Group                                        | 12x0.05 | 12 members            |
|                         | Target selection, Calibrators, FPOSS & OF             | Bs      | ·                     |
| Open Clusters:          | Alicante, Armagh, Torino, ETH, MSSL                   |         |                       |
| membership analysis     | Vienna, Mr IA, Palermo, Barcelona, Granada            |         | E. Alfaro (Sp)        |
| auxiliary data          | Bologna, Madrid (CAB), ESO, LON, Genera, MP           |         |                       |
| target selection        | Herts, Arcetri, Uppsala, ROBelg, ESO, ESA             | 6       | E. Paunzen (At)       |
|                         | Leicester, Indiana, ETH, Lisbon, Grenoble             |         |                       |
|                         | Keele, IAC, Athens                                    |         | A. Bragaglia (I)      |
|                         | Padova, Catania, Porto, Nice, ZAH                     |         |                       |
| Galactic Plane          |                                                       |         |                       |
| Field Selection         | Paris, RUG, AIP, MSSL, Strasbourg, Oxford             | 4.5     | C. Babusiaux (Fr)     |
| Calibrators &           | AAO, AIP, Uppsala, Camb, Bordeaux                     |         |                       |
| Standards               | Antwerp, Bologna, Madrid, Paris, MPA,                 | 1.5     | E. Pancino (I)        |
| OB/fposs generation:    |                                                       |         |                       |
| Field Survey            | Paris, ESO, Camb, Lund, AIP, ZAH                      | 2       | T. Bensby (Se)        |
| Cluster Survey          | Arcetri, Bologna, Catania, Padova, Palermo, IAC       | 2.5     | E. Flaccomio (I)      |
|                         | Exeter, Alicante, CAUP, ESO                           |         |                       |
|                         | Spectrum Extraction Pipelines                         |         |                       |
| Pipeline Raw Data:      |                                                       |         |                       |
| GIRAFFE Reduction       | CASU, Keele                                           | 1       | M. Irwin (UK)         |
| UVES Reduction          | Arcetri                                               | 2       | L. Morbidelli (I)     |
| Radial Velocities       | Camb, Keele, Arcetri, Antwerp, ZAH                    | 2       | Camb/Keele/Arcetri    |
| Discrete Classification | Camb, MPIA, IAC, Madrid, MSSL, Porto, ZAH             | 2.5     | S. Koposov (UK)       |
|                         | Spectrum analyses                                     |         |                       |
| FGK Stars:              | Paris, MPA, Lund, Uppsala, Nice, IAC, Bordeaux        |         | A. Recio-Blanco (Fr)  |
|                         | Arcetri, Bologna, Liège, Geneva, Alicante             |         | C. Allende Prieto (Sp |
| GIRAFFE                 | Nice, ESO, Porto, ZAH, Arcetri, Naples                | 17      |                       |
|                         | Catania, Padova, Kaypten,                             |         |                       |
| FGK Stars:              | Paris, MPA, Lund, Uppsala, Nice, IAC, Vilnius, Herts  |         | A. Korn (Se) &        |
|                         | Arcetri, Bologna, AIP, Indiana, Madrid (UCM)          |         | R. Smiljanic (ESO)    |
| UVES                    | Groningen, ESO, Naples, Porto, ZAH, Catania, Alicante | 14      |                       |
|                         | Catania, Padova, Liĝe, Bordeaux                       |         |                       |
| Pre-Main-Sequence       | Arcetri, Catania, IAA                                 |         | A. Lanzafame (I)      |
| stars                   | Naples, Palermo, ETH, CAUP                            | 8       |                       |
|                         | Keele, Exeter, Madrid (UCM, CAB)                      |         |                       |
| OBA Stars               | Liege, RO Belg, AIP, OMA, Madrid, Paris, Armagh       |         | R. Blomme (Be)        |
|                         | Alicante, Uppsala, MPIA, ZAH, Leuven, Herts           | 2       |                       |
|                         | Calar Alto, Nice, IAA                                 |         |                       |
| Unusual Objects         | SRON, Nijmegen, Warwick, MPIA, Herts, ZAH, Leuven     | 1       | tbc                   |
|                         | Survey monitoring, database, archive                  |         |                       |
| Survey Parameter        |                                                       |         |                       |
| Homogenisation          | all spectrum analysis groups                          | 4       | P. Francois (Fr)      |
| Survey Progress         | CASU                                                  | 0.5     | Co-PIs                |
| Operational database    | CASU/Cambridge                                        | 1       | CASU                  |
| Survey Archive          | AIP, RUG, Madrid, Vienna, ZAH, Edin                   | 1       | N. Hambly (UK)        |
| Outreach                | Camoridge                                             | 0.1     | N. Walton (UK)        |



# Working groups







### Data Release

- All raw data immediately public
- 3-level data products with different time scales
- Level-1: 1D spectra, associated photometry, object classification and RVs (release every 6 months)
- Level-2: RV variability info, atmospheric parameters and abundances (yearly releases)
- Level-3: all of the above for final co-added data and mean cluster metallicities (end of survey)







### Competition

- SDSS, SEGUE1/2
- BOSS
- SDSS-III APOGEE
- HERMES
- HETDEX
- After Sloan 3 (STREAMS, APOGEE-II/S)
- BigBOSS, 4MOST, MOONS, WEAVE







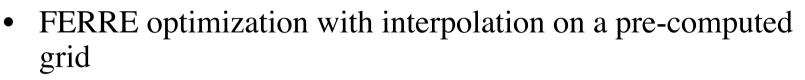
### Spanish involvement

- Groups at Alicante, Barcelona, CAB, Calar Alto, IAA, IAC, UCM
- I. Negueruela on the Steering Committee
- E. Alfaro & C. Allende Prieto as WG coordinators; also A. Recio-Blanco (OCA)
- IAC/Alicante/AIP group on spectral analysis





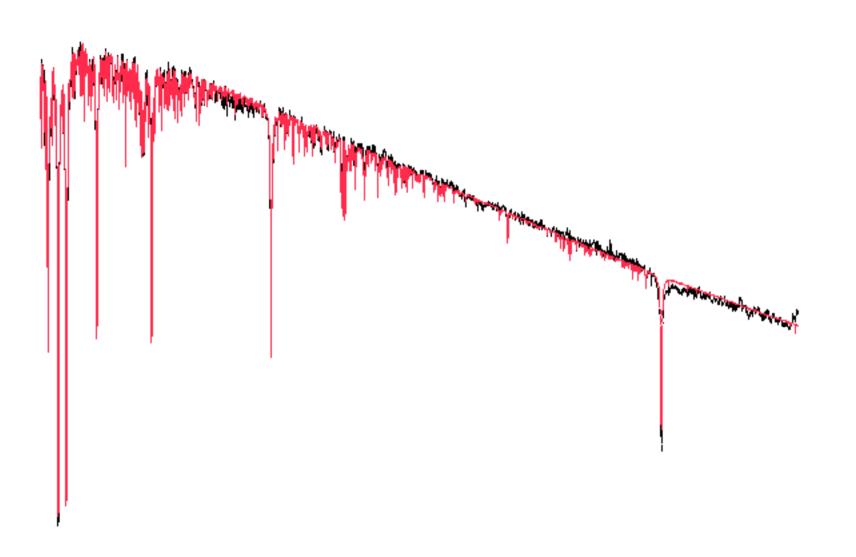



### IAC - UA - AIP

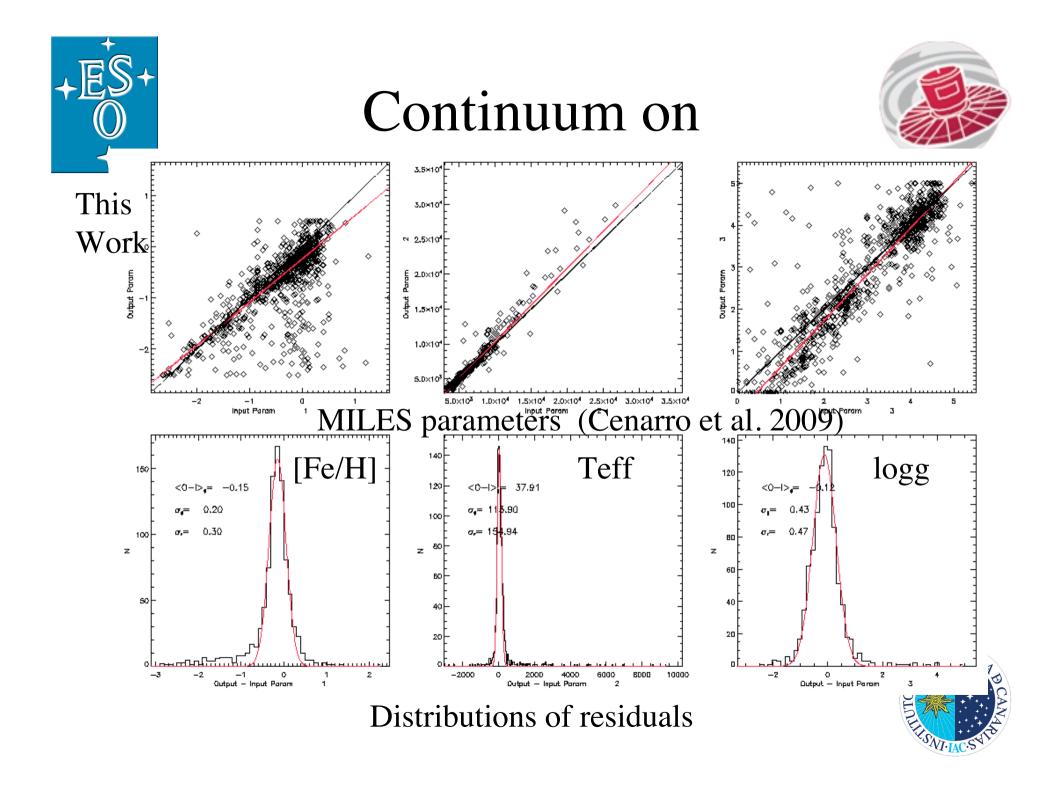
- Analysis of GIRAFFE spectra with automated methods: ANN, Bayesian (Bikini), optimization/interpolation (FERRE) w/o PCA
- Close collaboration with OCA (Nice)
- Analysis of UVES spectra with FERRE



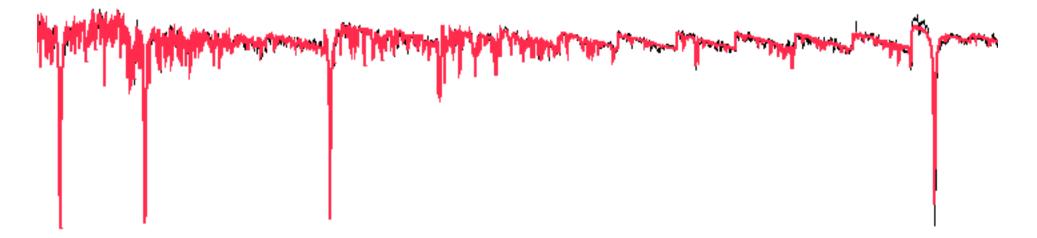



### Data Analysis




- N-dimensional f90 code
- Various algorithms: Nelder-Mead (Nelder & Mead 1965), uobyqa (Powell 2002), Boender-Rinnooy Kan-Strougie-Timmer algorithm (1982)
- Linear, quadratic, cubic spline interpolation
- Spectral library on memory or disk
- PCA compression
- Handling of complex PSF w/o compression
- Flexible: SDSS/SEGUE/BOSS, WD surveys, APOGEE, STELLA, Gaia-ESO...

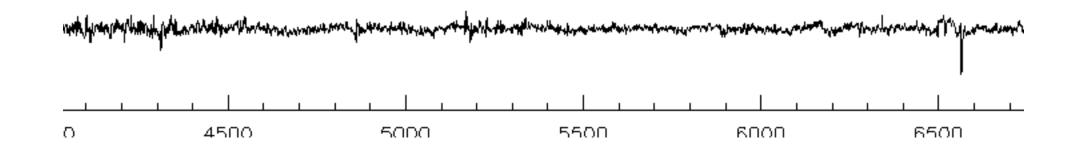


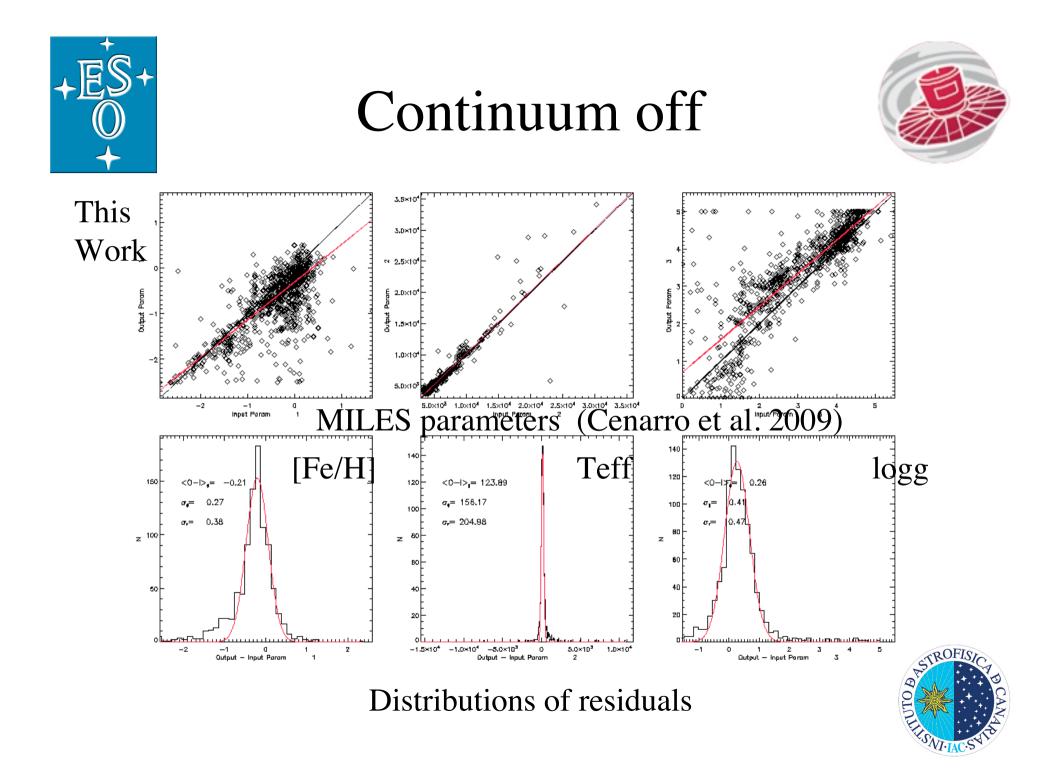










#### 3.7180 6109.9448 -1.4420




.

.

lc2=0.02







### Gaia-ESO Summary



- 100,000 stars at mid-resolution (x2 GIRAFFE settings) and 10,000 stars at high-resolution: 300 VLT nights over 5 yr
- Field stars and open clusters
- Uniform composition and radial velocity information across the Galaxy complementing Gaia's data
- Large european consortium
- Swift schedule for data reduction/processing/analysis/delivery
- But serious competition!

