CAIA MEAN SPECTRA: REPRESENTATION & CALIBRATION

Josep Manel Carrasco

Barcelona, 17-19 February 2020 Institute of Cosmos Sciences (ICCUB-IEEC)

Coordination: Red Española de Explotación Científica de Gaia

SECOND GAIA DATA RELEASE (25/04/2018)

SECOND GAIA DATA RELEASE (25/04/2018)

Gaia DR2 imatge (integrated flux per píxel)

WHY PHOTOMETRY?

 Photometry is necessary to account for the chromatic aberrations in the astrometric focal plane to achieve microarcsec accuracy level

GAIA-CA-TN-ESA-JDB-028

Centroid positions for the polychromatic diffraction images of different spectra versus effective wavenumber, for two representative WFE maps. Stellar spectra from the Pickles library ($A_{550} = 0$ and 2 mag). The error bar shows the photon-statistical centroiding error σ_{ξ} for a single-CCD transit of a bright star (G < 13 mag).

THE COLOUR OF GAIA'S EYES

PoW: 2 Oct 2015

BP/RP SPECTROPHOTOMETERS

Figures courtesy EADS-Astrium

Blue photometer: 330–680 nm

Red photometer: 640–1000 nm

COVERAGE & RESOLUTION

Wavelength coverage:

BP: 330-680 nm,

RP: 640-1000 nm

GDR2 PHOTOMETRIC PERFORMANCE

Systematics ≤ 10 mmag.

Remaining caveats:

Faint end dominated by stray-light

Bright end affected by saturation effects

Calibration issues at window class regime transitions

Expected improvement in EDR3

GDR2 PHOTOMETRIC PERFORMANCE

Red line: 5 and 3 mmag calibration error threshold in BP and RP, respectively

FUTURE PHOTOMETRIC CONTENT

EDR3 (Q3 2020)

- 34 months of input data (~ 1.8 billion sources)
- Improved integrated photometry (G, G_{BP} , G_{RP})
- $-\sigma_G^{EDR3} \sim 0.7 \sigma_G^{DR2}$

DR3 (H2 2021)

- Mean BP/RP spectra (TBD subset of sources, with astrophysical parameters determination) + Tool to handle BP/RP spectra.
- Photometric variablity (~ 7 million sources)
- Solar system photometry (~ 100000 sources)
- Mean BP/RP reflectance spectra for solar system objects (~ 5000)

COVERAGE & RESOLUTION

Wavelength coverage:

BP: 330-680 nm,

RP: 640-1000 nm

Resolution:

BP: 4-32 nm/pixel

RP: 7-15 nm/pixel

- Different resolution in different pixels
- PSF blurs the wavelength information in Gaia
 - → Challenging calibration

FIRST XP SPECTRA (COMMISSIONING)

FIRST XP SPECTRA (COMMISSIONING)

PoW: 5 Jun 2014

BP/RP PROCESSING FLOW

BP/RP INTERNAL CALIBRATION

Initialisation - Iterations are required to establish a catalogue of reference spectra

BP/RP INTERNAL CALIBRATION

all observations of a given calibration unit contribute to the definition of the calibration

$$f_i = \sum_{j=-M}^{+M} \left[a_{ij} \right] h_{i+j}$$

NEIGHBOURS INFLUENCE

 (f_i)

MEAN RESAMPLED SPECTRUM (geometry and dispersion as known)

 (h_i)

j=±2 contribution

j=±1 contribution

j=0 contribution

Neighbouring samples influence (M=2 case) to take into account instrumental changes effects from reference mean spectrum to observation to be predicted.

> LSF smearing, D change, ...

i-2 i-1 i i+1 i+2

 λ_{i-2} λ_{i-1} λ_{i} λ_{i+1} λ_{i+2}

SAMPLES

Central wavelengths associated to samples

BP/RP INTERNAL CALIBRATION

all observations of a given **source** contribute to the definition of the mean spectrum

$$f_i = \sum_{j=-M}^{M} a_{ij} \sum_{k=0}^{K} b_k B_{k,i+j}$$

MEAN SPECTRA REPRESENTATION

Internally calibrated XP mean spectrum : $f(u) = \sum_{i=0}^{N-1} b_i \varphi_i(u)$

Externally calibrated XP mean spectrum: $s(\lambda) = \sum_{i} \dot{\phi}_{i}(\lambda)$

OPTIMISATION OF THE BASIS FUNCTIONS

Source coefficients and the basis functions will be published

- + Tool to derive sampled spectra from the coefficients
- + Sampled spectra for a subset of sources

OPTIMISATION OF THE BASIS FUNCTIONS

Source coefficients and the basis functions will be published

- + Tool to derive sampled spectra from the coefficients
- + Sampled spectra for a subset of sources

EXTERNAL CALIBRATORS (SPSS)

The link between Vega and our SPSS will be ensured by 3 *Pillars*; used to calibrate the *Primaries* (50), our ground-based calibrators spread over the whole sky. They will in turn enable to calibrate our *Secondaries* (200), the actual *Gaia* grid.

Sky position distribution

V and SpT distribution

Absolute BP/RP spectra

PANCINO ET AL 2012, MNRAS 426, 176 (UPDATED IN 2019 ADDING MORE SOURCES)

FUTURE PHOTOMETRIC CONTENT

DR4 (TBD)

- Full catalogue
- All epoch and transit data for all sources

Image credits: ESA/Gaia/DPAC, Mowlavi et al.

SYNTHETIC PHOTOMETRY FROM XP SPECTRA

BP/RP spectra could potentially be used as library of standards

