A high-resolution spectroscopic study of massive supergiant stars in Per OB1

Definition of the sample, membership, and kinematics Abel de Burgos Sierra, Ph.D. student Sergio Simón Díaz, IAC

Expanding the Gala Legacy Barcelona 17-19. 2020

The importance of Per OB1 to study HR diagram of h and χ Persei

massive star evolution

Young cluster ~10-20 Myr.

Many massive stars at different evolutionary stages.

They all share the same properties: distance, chemical composition, and ages.

Adapted from Slesnick, C. & Hillenbrand, L. A. 2002

Aiming of this work

The ultimate **goal** is to perform a complete empirical characterization of all massive **members** around its center.

First step: study of membership and kinematics of potential members.

Adapted from Slesnick, C. & Hillenbrand, L. A. 2002

Building up the sample...

Crossmatch between IACOB DB and several catalogs of massive supergiants stars within **4.5** deg around the center.

We found **93** different massive stars with at least one spectrum.

46 stars

14 stars

13 stars

20 stars

Building up the sample...

Of the 93 stars we found 30 with more than 3 epochs.

We used these spectra for investigating spectroscopic variability and to detect SB1/SB2 binaries.

Methodology RV measurements

- Catalog of lines with SpT
- Apply correction for heliocentric velocity
- Preliminar initial correction
- RVs for ~40 different lines
- Sigma clipping ~25 lines

	Stellar li	ines			/, O 1-1 II, Cr I									l I-III, F	P -)			
1	Line (Å)	Element	Ref.	09	В0	B1	B2	В3	B4	B5	В6	В7	В8	В9	A0	A1	A2	0
	3911.958	OII	NIII	0	1+	1+	1+	1+	1+	0	0	0	0	0	0	0	0	3/5
	3920.681	CII	NIII	0	0	0	0	1-	1-	1	1+	1+	1+	1+	1+	1+	1	3/5
	3945.232	CII	SPW	0	0	0	0	0	0	0	0	0	0	0.5	1	1+	1+	4/5
	3951.965	VII	SPW	0	0	0	0	0	0	0	0	0	0	0	0.5	1	1+	3/5
	3961,573	OIII	SA3	1	1+	0	0	0	0	0	0	0	0	0	0	0	0	4/5
	3994.997	NII	NIII	0.5	1+	1+	1+	1+	1+	1+	1+	1+	1+	0.5	0	0	0	5/5
	4012.496	CrII	SPW	0	0	0	0	0	0	0	0	0	0	0.5	1+	1+	1+	4/5
	4067.031	Ni II	SPW	0	0	0	0	0	0	0	0	0	1	1+	1+	1+	1+	4/5
	4088.862	SilV	SD10	1+	1+	1+	1+	0.5-	0	0	0	0	0	0	0	0	0	5/5
	4097.36	NIII	SA3	1+	1+	1+	1	0	0	0	0	0	0	0	0	0	0	4/5
	4116.103	SilV	SD10	1+	1+	1+	1+	0	0	0	0	0	0	0	0	0	0	4/5

Methodology RV measurements (multi-epoch)

Methodology Completing the information with Gaia DR2

We have taken into account:

- Parallaxes and proper motions with high errors.
- For bright stars (G mag < 6.5) must be handle with special care.

Methodology Completing the information with Gaia DR2

Methodology Completing the information with Gaia DR2

Results: membership and kinematics Parallax and proper motions

Outliers in parallax									
O-type	B-type	A-type	M-type						
2 stars	4 stars	2 stars	5 stars						
13 %	8.7 %	15 %	25 %						

Outliers in total proper motion									
O-type	B-type	A-type	M-type						
6 stars	2 stars	1 stars	3 stars						
43 %	4.3 %	7.7 %	15 %						

Results: membership and kinematics Parallax and proper motions

Results: membership and kinematics Radial velocities

Results: membership and kinematics Radial velocities

Outliers in radial velocity									
O-type	B-type	A-type	M-type						
8? stars	6 stars	2 stars	2 stars						
62 %?	13 %	15 %	10 %						

Results: membership and kinematics Multi-epoch information

We complement the information using the peak-to-peak variability.

Results: membership and kinematics Multi-epoch information

Only stars with multi-epoch (+3 spectra)

Results: membership and kinematics Multi-epoch information

Only stars with multi-epoch (+3 spectra)

Results: membership & kinematics

Final visual inspection of the multi-epoch spectra to separate SB1/SB2

Results: membership & kinematics

Name	SpT	Parallax	Proper motions	Best RV	Multi- epoch	Binary	Comments
HD15558	0	1	1	1	1	SB2	
HD13022	0	1	0	1			Walkaway
BD+60498	0	1	1	1		SB1	
HD16429	0	0	0	1	1	SB2	Bad Plx. Runaway.
HD13268	0	0	0	0	0		
HD13969	В	1	0	0		SB1	Walkaway
HD14053	В	1	1	1	1		
HD14322	В	0?	1	1	1		Gmag = 6.6
HD14331	В	1	1	1			
BD+56578	В	1	1	0	0		Runaway
HDE232588	Α	0	0	0			
HD14535	A	1	1	1	1		
HD14489	A		1	0	1		Gmag = 5
HD12842	М	1	0	0	0		Runaway
HD14270	M	1	1	1	1		
HD13136	М	0?	1	1	1		Gmag = 6.6

Results: membership & kinematics

	Results from the membership analysis								
	O-type (14 stars)	B-type (46 stars)	A-type (13 stars)	M-type (20 stars)	Total (93 stars)				
Members	8	38	11	13	70				
Runaways	5	4	0	2	11				
Unclear	0	3	1	2	6				
Discarded	1	1	1	3	6				
SB1 / SB2	2/2	4/3	0/0	0/0	6/4				

Summary and future plans

- We have investigated the membership and kinematics of 93 massive stars within 4.5 degrees around h + χ Persei.
- In this work we combine information from ground based high-res 2) spectroscopy together with the Gaia data.
- We have confirmed **70** of them as members of Per OB1. We discarded **6**.
- Another 11 are runaways and 6 remain unclear.
- 5) Among them we identified **6** SB1 and **5** SB2.
- This information will be used for the interpretation of the subsequent quantitative spectroscopic analysis of the full sample.
- Results will be confronted with the predictions of evolutionary models.

