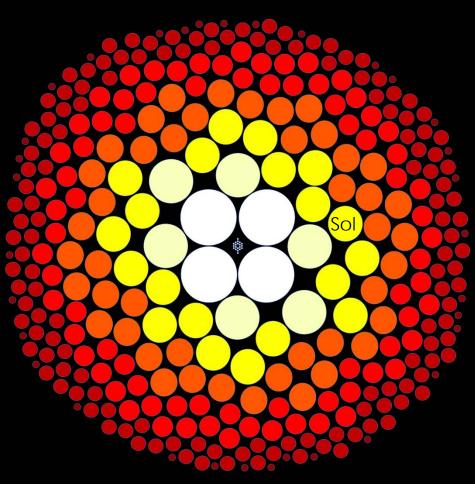
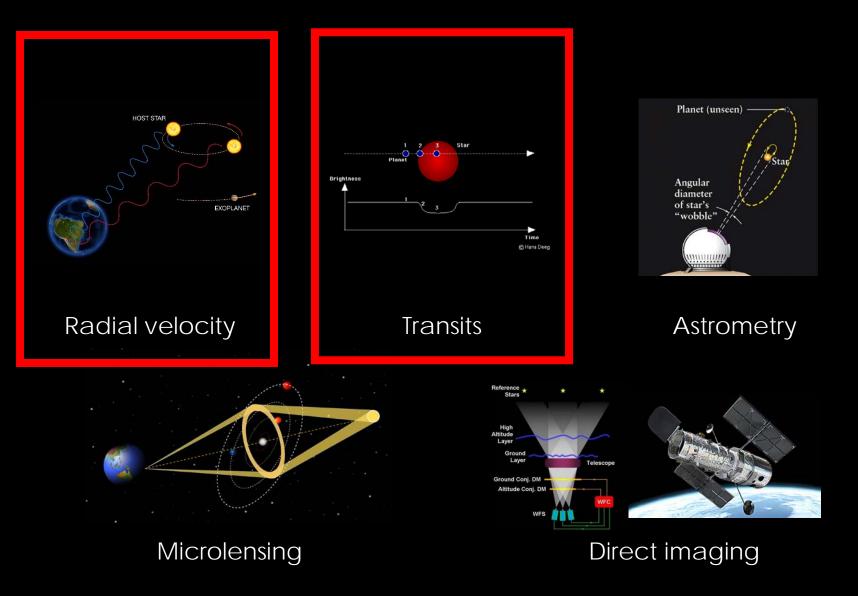

Exoplanets in the Gaia era : Searching nearby exoplanets for direct imaging & more

Guillem Anglada-Escudé

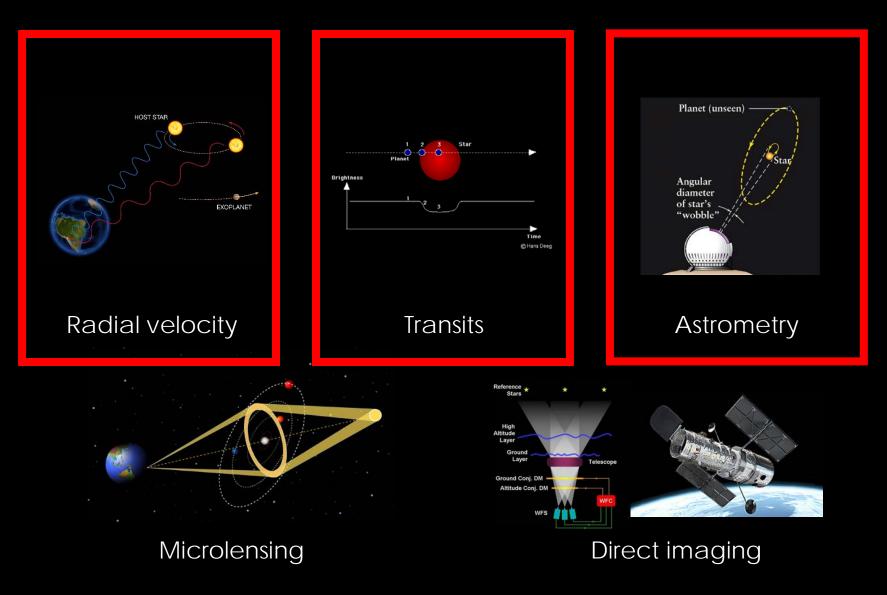
Institut de Ciències de l'Espai-CSIC Institut d'Estudis Espacials de Catalunya (IEEC)

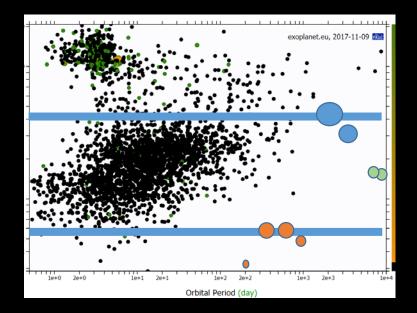
(formerly at Queen Mary Univ. of London)



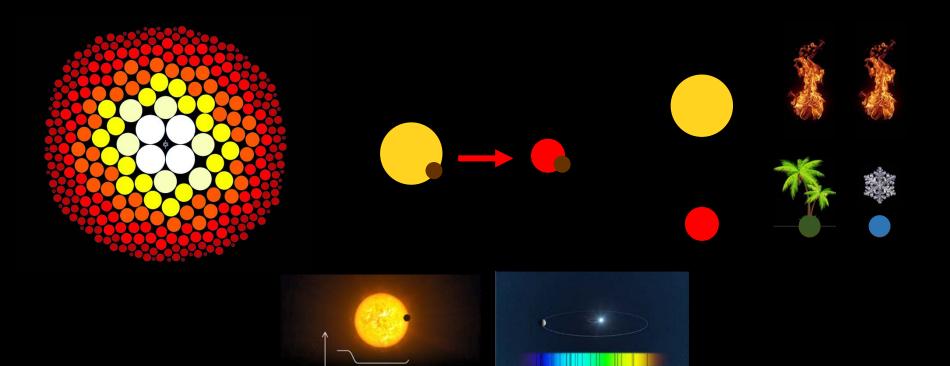


Nearest stars


10 pc sample


How we find exoplanets?

How we find exoplanets?


The exoplanet zoo today

exoplanet.pt, 2017-11.09

Transit method Radius Radial velocity method Mass

The red dwarf advantage

The 5pc sample

#	Name	ID		Sp.type	Radius	Teff	L/L _{Sun}	Center HZ [AU]	Distance [pc]	Mass/M _{Sun}
0	Sol	Sun		G2.0V 💛	1.00	5800	1.000000	1.225	0.000	1.00
1	Proxima Centauri	GJ 551	С	M5.5V •	0.17	2700	0.001328	0.046	1.301	0.11
1	Alpha Centauri A	GJ 559	А	G2.0V 💛	0.88	6700	1.411351	1.491	1.339	1.14
	Alpha Centauri B		В	K0.0∨ O	0.77	5400	0.456550	0.848	1.339	0.92
2	Barnard's Star	GJ 699		M4.0V •	0.20	3100	0.003245	0.072	1.833	0.16
3	Luhmann 16 A	WISE 1049		L7.5V •	0.05	1350	0.000006	0.003	1.998	0.05
	Luhmann 16 B			TO.5	0.04	1250	0.000003	0.002	1.998	0.05
4	Wolf 359	GJ 406		M6.0V	0.16	2500	0.000919	0.038	2.386	0.09
5	alande 21185	GJ 411		M2.0V	0.34	3700	0.019190	0.174	2.543	0.46
6	Sirius	GJ 244	A	A1.0V O	1.65	10000	24.252863	6.181	2.632	1.99
	Siri∪s B		В	WD/DA2	0.01	20000	0.014340	0.002	2.632	1.00
7	3L Ceti	GJ 65	А	M5.5V •	0.25	2600	0.002519	0.063	2.674	0.11
	JV Ceti		В	M6.0V	0.23	2700	0.002411	0.062	2.674	0.10
8	Ross 154	GJ 729		M3.5V 🔴	0.21	3100	0.003791	0.077	2.965	0.17
8	Ross 248	GJ 905		M5.5V •	0.22	2700	0.002222	0.059	3.161	0.12
9	epsilon Eridani	GJ 144		K2.0V O	0.63	5400	0.302474	0.690	3.213	0.85
10	acaille 9352	GJ 887		M1.5V 🔴	0.41	3800	0.032031	0.225	3.278	0.53
11	Ross 128	GJ 447		M4.0V •	0.21	3000	0.003294	0.072	3.354	0.16
12	EZ Aquarii A	GJ 886	А	M5V •	0.16	3000	0.001858		3.454	
	EZ Aquarii C		С	M6V •	0.15	2700	0.001072		3.454	
	EZ Aquarii B		В	M5V •	0.22	2700	0.002202	0.059	3.448	0.08
13	61 Cygni A	GJ 820	А	к5.0∨ О	0.71	4000	0.115336	0.427	3.497	0.70
	61 Cygni <mark>B</mark>		В	K7.0V O	0.53	4300	0.086071	0.369	3.497	0.63
14	Procyon	GJ 280	А	F5.0IV-V 📃	1.91	6700	6.561093	3.215	3.509	1.57
	Procyon B		В	WD/DQZ					3.507	0.50
15	HS 58	GJ 725	A	M3.0V •	0.34	3400	0.014173	0.150	3.521	0.35
	LHS 59		В	M3.5V 🔴	0.28	3300	0.008038	0.113	3.521	0.26
16	GX Andromedae	GJ 15	A	M1.5V •	0.32	3800	0.019497	0.176	3.571	0.49
	GQ Andromedae		в	M3.5V •	0.20	3200	0.003647	0.076	3.571	0.16
17	Epsilon Indi A	GJ 845	А	K5.0∨ ○	0.61	4900	0.190995	0.549	3.623	0.77
	Epsilon Indi B		в	T1.0V •	0.08	1300	0.000016	0.005	3.623	0.07
	Epsilon Indi C		с	T6.0V •	0.08	900	0.000004	0.002	3.623	0.05
18	DX Cancri	GJ 1111		M6.0V	0.16	2400	0.000780	0.035	3.626	0.09
	íau Ceti	GJ 71		G8.0V 😑	0.70	5700	0.463582	0.855	3.650	0.92
	GJ 1061	GJ 1061		M5.0V	0.18	2700	0.001509	0.049	3.676	0.11

RECONS : list of nearest stars + a few more

#	Name	ID		Sp.type		Radius	Teff	1/1.	Center HZ [AU]	Distance [pc]	Mass/M.
21	YZ Ceti	GJ 54.1		M4.5V	•	0.18	2900	0.002077	0.057	3.716	0.13
22	Luyten's Star	GJ 273		M3.5V	•	0.32	3200	0.009384	0.121	3.756	0.26
23	SCR 1845-6357 A	SCR 1845	А	M8.5V	•	0.13	2000	0.000239	0.019	3.854	0.07
	SCR 1845-6357 B	SCR 1845	В	T5∨	•	0.08	950	0.000005	0.003	3.854	0.03
24	SO 0253+1652	SO 0253		M7.0V	•	0.16	2400	0.000724	0.034	3.855	0.08
25	Kapteyn's Star	GJ 191		M1.5VI	•	0.24	3800	0.010764	0.130	3.911	0.39
26	AX Microscopii	GJ 825		M0.0V	•	0.52	4100	0.067432	0.326	3.946	0.60
27	DEN 1048-3956	DEN 1048		M8.5∨	•	0.13	2000	0.000257	0.020	4.024	0.07
28	Kruger 60 A	GJ 860	А	M3.0V	•	0.33	3300	0.011435	0.134	4.032	0.28
	Kruger 60 B		В	M4.0V	•	0.19	3200	0.003537	0.075	4.032	0.16
29	Ross 614 A	GJ 234	А	M4.0V	•	0.29	3000	0.005980	0.097	4.092	0.17
	Ross 614 B		В	M5.5∨	•	0.16	2700	0.001144	0.043	4.092	0.10
30	Wolf 1061	GJ 628		M3.0V	•	0.32	3200	0.009684	0.124	4.267	0.26
31	∨an Maanen's Star	GJ 35		WD/DZ7.5	•	0.01					0.50
32	LHS 1	GJ 1		M1.5V	•	0.35	3700	0.020459	0.179	4.342	0.48
33	Wolf 424	GJ 473	А	M5.0V	•	0.21	2700	0.002141	0.058	4.386	0.12
	Wolf 424		В	M7.0V	•	0.18	2900	0.001986	0.056	4.386	0.12
34	TZ Arietis	GJ 83.1		M4.5V	•	0.20	2900	0.002410	0.062	4.448	0.14
35	GJ 687	GJ 687		M3.0V	•	0.41	3400	0.019742	0.176	4.536	0.39
36	LHS 292	LHS 292		M6.5V	•	0.15	2400	0.000634	0.032	4.539	0.08
37	G 208-044	GJ 1245	A	M5.5V	•	0.19	2700	0.001793	0.053	4.545	0.11
			В	M6.0V	•	0.15	2700	0.001072	0.041	4.545	0.07
	G 208-045		С	M7.0V	•	0.17	2100	0.000510	0.029	4.545	0.10
38	GJ 674	GJ 674		M2.5V	•	0.36	3400	0.015094	0.154	4.543	0.36
39	WD 1142-645	GJ440		WD/DQ D	•						0.50
40	Ross 780	GJ 876		M4.0V	•	0.39	3100	0.012589	0.141	4.663	0.27
41	GJ 1002	GJ 1002		M5.0V	•	0.14	2900	0.001278	0.045	4.695	0.11
42	LHS 288	LHS 288		M5.5∨	•	0.15	2700	0.001072	0.041	4.769	0.11
43	GJ 412	GJ 412	А	M1.0V	•	0.35	3700	0.020931	0.182	4.854	0.48
	WX Uma		В	M5.5V	•	0.15	2600	0.000946	0.039	4.854	0.10
44	GJ 380	GJ 380		K7.0∨	0	0.65	4100	0.106345	0.410	4.865	0.64
45	GJ 388	GJ 388		M3.0V	•	0.45	3300	0.021715	0.185	4.888	0.39
46	GJ 832	GJ 832		M1.5V	•	0.42	3600	0.026935	0.206	4.950	0.50
47	LP 944-020	LP 944-020		M9.0V	•	0.09	2000	0.000119	0.014	4.965	0.07
48	DEN 0255-4700	DEN 0255		L7.5V	•	0.09	1300	0.000021		4.966	0.05
	Omicron 2 Eridani	GJ 166	A	K0.5∨	0	0.74	5200	0.354013	0.747	4.975	0.89
			В	WD/DA4	•					4.975	0.50
				M4.5V	•	0.25	3200	0.005827	0.096	4.975	

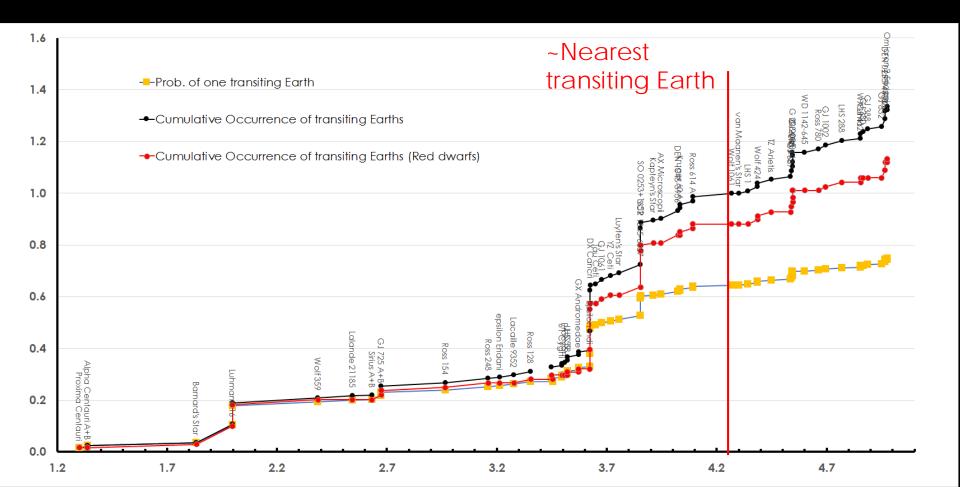
1 A

1 F

3 G

7 K

<u>46 M</u>


6 BD

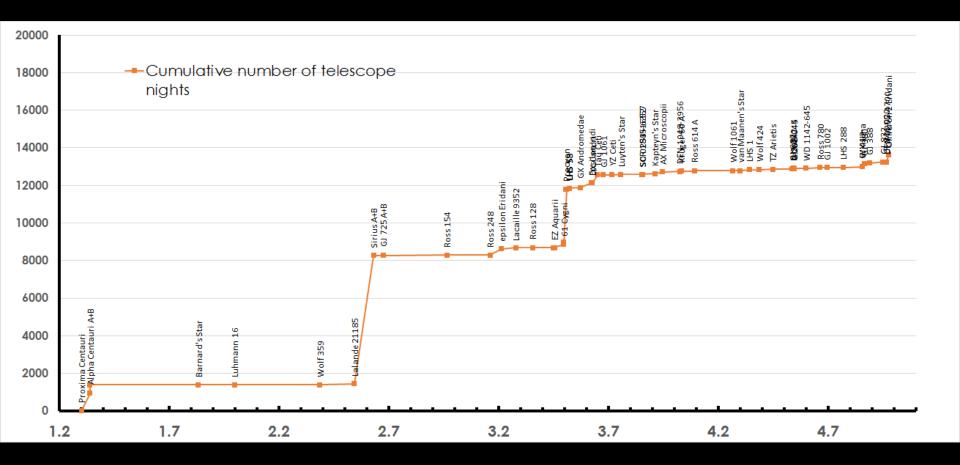
5 wd

The 5 pc sample by transits

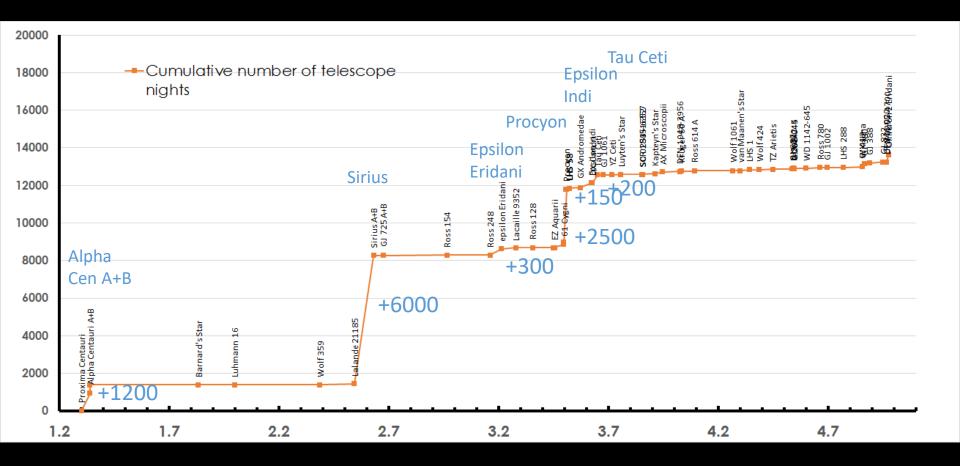
1 Earth-size planet in the HZ of the star

Chance of one transiting : ~75% Expected number ~1.2

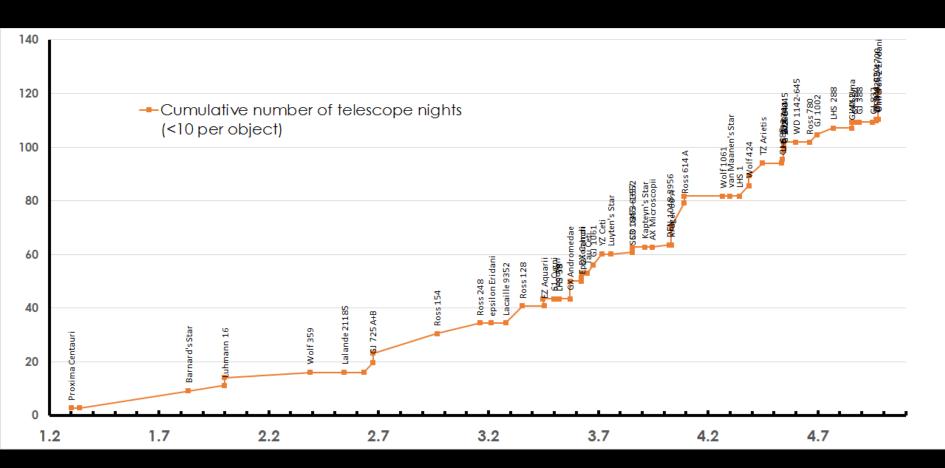
The 5 pc sample by transits


1 Earth-size planet in the HZ of the star

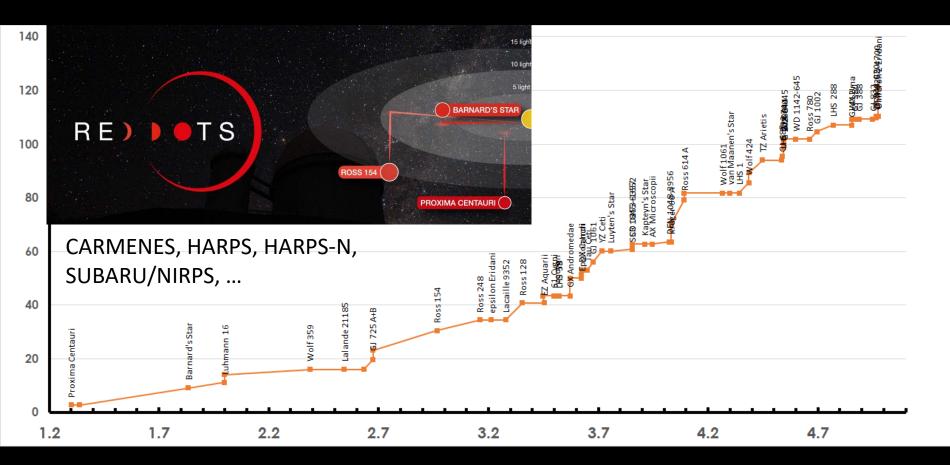
Chance of one transiting : ~75% Expected number: 1.1 & 1.3


The 5 pc sample by Doppler

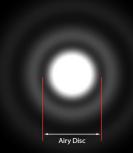
One epoch precision of 1 m/s S/N > 5

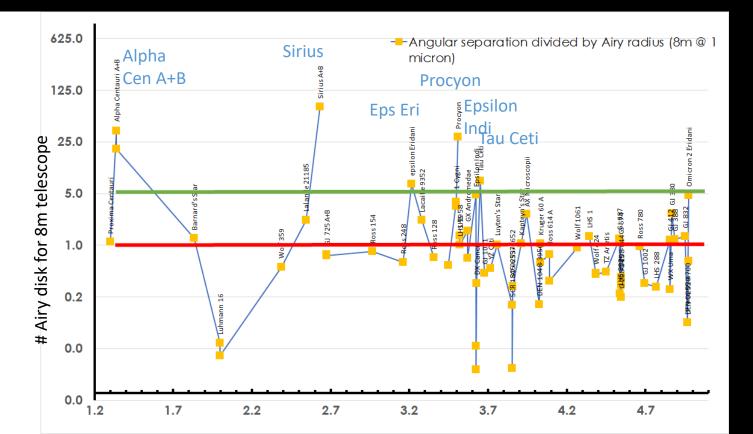

The 5 pc sample by Doppler

One epoch precision of 1 m/s S/N > 5


The 5 pc sample by Doppler

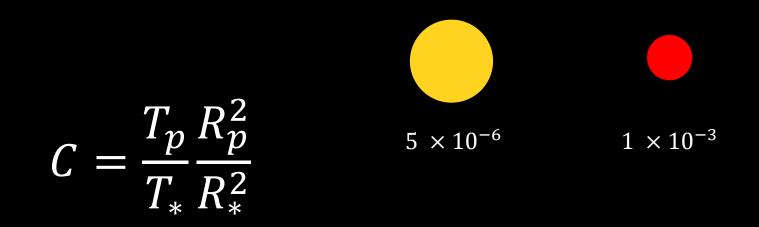
Easy ones : less than 1 year 37 systems (~60%)



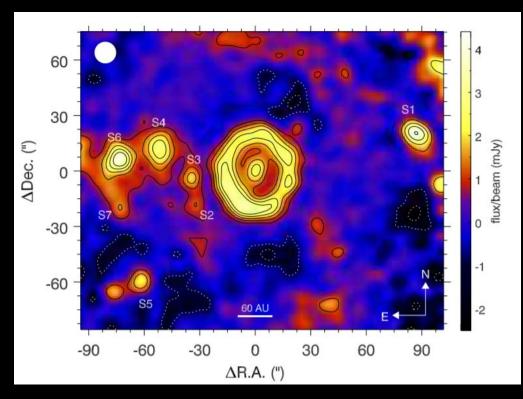

The 5 pc sample by Doppler

Easy ones : less than 1 year 37 systems (~60%)

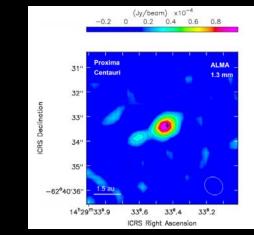
The 5 pc sample by Imaging



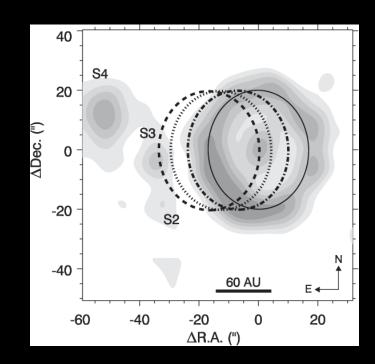
19


Transits (if any)

The 5 pc sample in millimetric/radio?



+ non-thermal processes...?


The 5 pc sample in millimetric/radio?

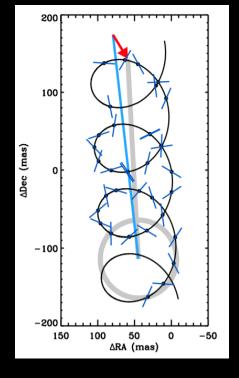
Epsilon Eridani, Chavez et al. 2016 w/LMT

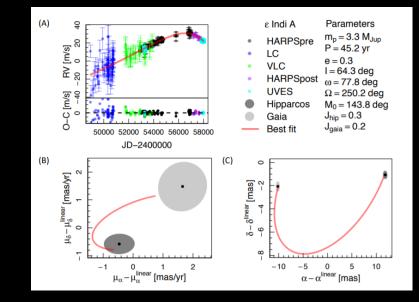
Proxima Cen, Anglada et al. 2018 w/ALMA

The 5 pc sample by Astrometry

Expected yields

1000 - few tens of thousands

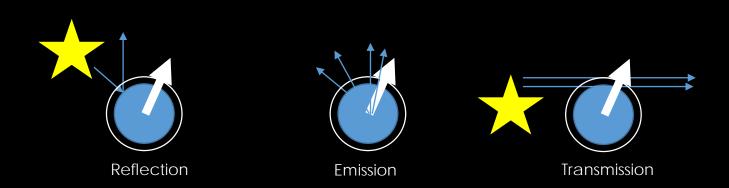

We have an basic idea of the occurrence rates, -> #detections strongly depends on Gaia performance


Ground Infrastructure required Large aperture with adaptive optics in optical, NIR or thermal IR

Perryman et al. 2014 ApJ

The 5 pc sample by Astrometry

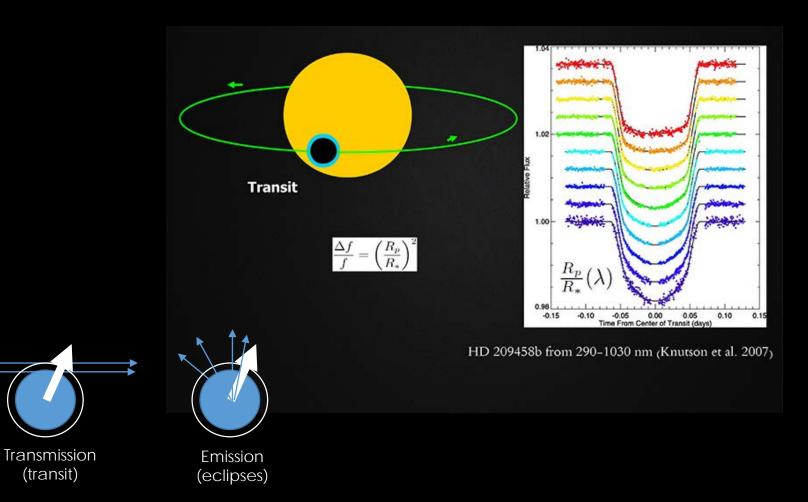
Snellen & Brown Nat. 2018 HIPPARCOS + Gaia DR2 joint fit


Epsilon Indi RV + HIP + Gaia DR2 Feng et al. 2019, ApJ

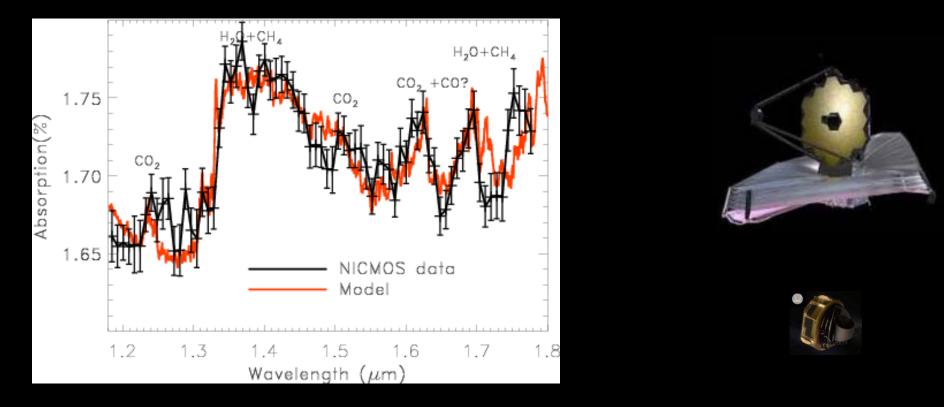
Ground Infrastructure required RV spectrometer (CARMENES, HARPS, etc.)

The 5 pc sample by Astrometry

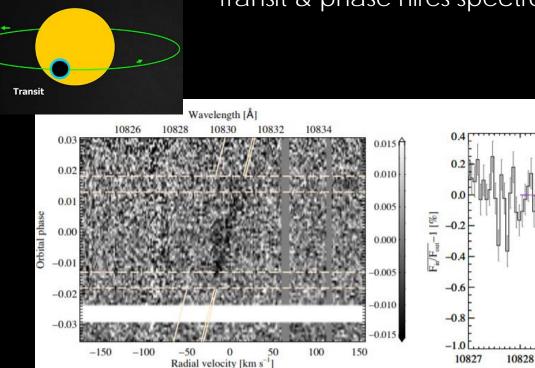
- Precision not achievable for terrestrials : with Gaia or Ground
- Gaia : distances to all exoplanet hosts. DR2 ok, but more precision need for distant targets (Kepler, PLATO)
- Link exoplanet to galactic pop. : Thick disk, thin disk, halo, etc.
- Gaia : Gas giant population statistics within 50-100pc
- Gaia + ground : possible direct detection and/or associated structures : optical/NIR, thermal IR, submm/radio


Ground Infrastructure required Large aperture with adaptive optics in optical, NIR or thermal IR Characterization

Transit & phase spectroscopy in lowres Transit & phase spectroscopy in hires


High contrast imaging High contrast imaging + lowres High contrast imaging + hires

Transit spectroscopy


Transit spectroscopy

Ground Infrastructure required Simultaneous follow-up small telescopes (photometry) High precision low-res spectrometry feasible? (GTC)

Tinnetti et al. 2010 ApJ XO-1

Transit & phase hires spectroscopy

He i λ 10830 Å in the transmission spectrum of HD 209458 b Alonso-Floriano et al. A&A 2019 w/ CARMENES

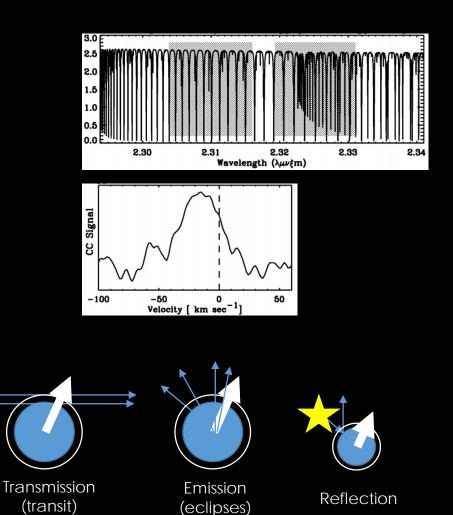
~1 micron (Y band)

10833

Ground Infrastructure required

10832

High precision high-res spectrometry in moderate/large telescope

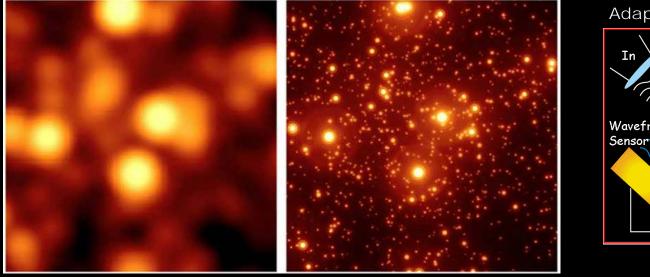

10829

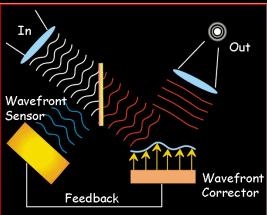
10830

Wavelength (Å)

10831

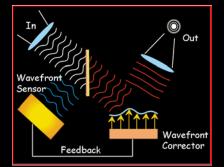
Transit & phase hires spectroscopy


HD 189733 - during transit

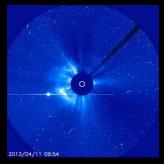

Brogi et al. 2016, ApJ

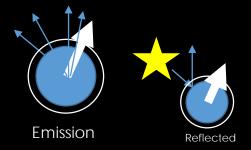
Ground Infrastructure required High precision high-res spectrometry in moderate/large telescope

High contrast imaging

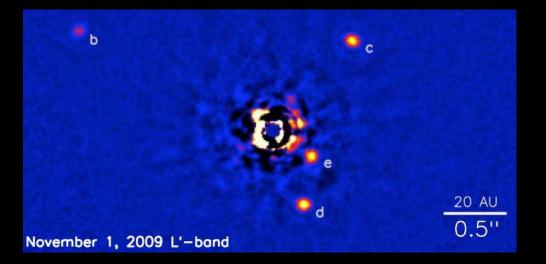


Adaptive optics

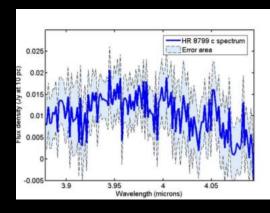



High contrast imaging

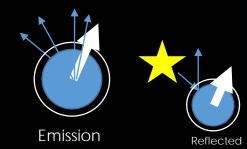
Adaptive optics



Coronograph

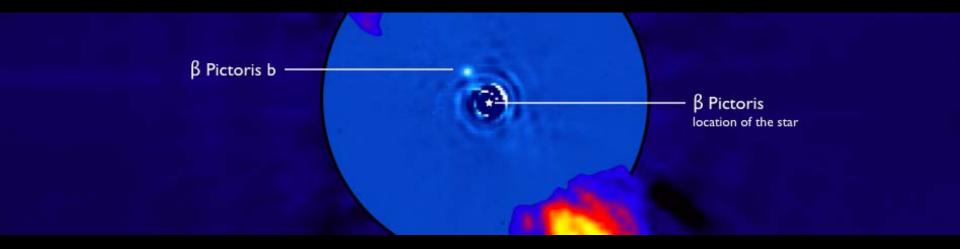


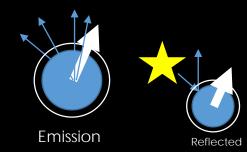
Ground Infrastructure required Adaptive optics in moderate sized telescope coupled with coronograph


High contrast imaging+low res

NACO @ VLT, press release image ESO Spatially resolved spectroscopy of the exoplanet HR 8799 c", by M. Janson et al. 2010 ApJL

Enough for young gas giants ...not enough for terrestrial planets

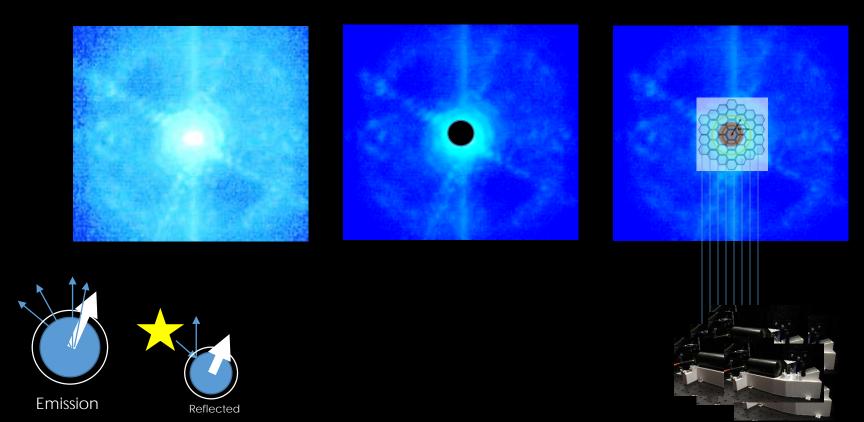




Ground Infrastructure required

Adaptive optics coupled with coronograph and low res spec

High contrast imaging with high resolution spectrometer



Snellen et al. 2014, Nature CRIRES, CO bands at 2.3 microns Ground Infrastructure required Adaptive optics coupled to highres spec & tech testbeds to E-ELT instrument

How to learn more?

Direct imaging with adaptive optics, a coronograph, and a high resolution spectrometer <u>array</u>

Clark Baker, QMUL

NEREA a high resolution spectrometer for the GTC.

Lol submitted Paper SPIE in prep

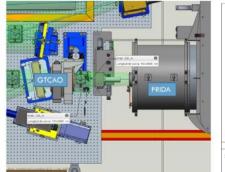
IAC, ICE/IEEC, CAB

(E. Palle, G. Anglada-Escude, I. Ribas, M. Zapatero-Osorio & more)

Immediate

- terrestrial planets around cool stars (TRAPPIST 1, Proximation)
- TESS follow-up of fa

Technology

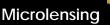

• Hirc

.o AO system in

the same time...

Inexpensive echelle units

J/nIR



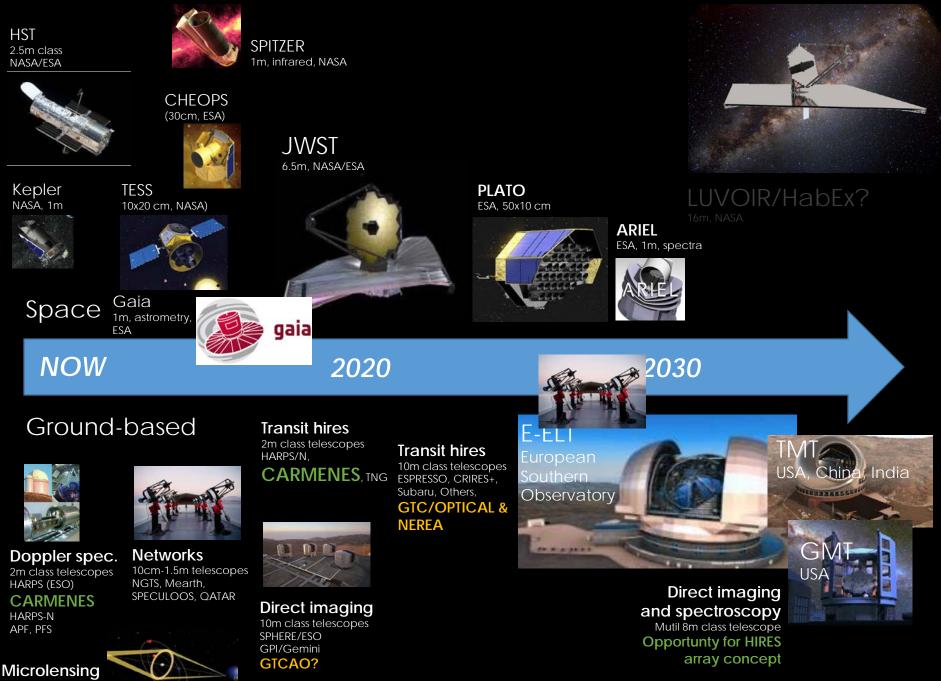
Ground-based

Doppler spec. 2m class telescopes HARPS (ESO) CARMENES HARPS-N APF, PFS

0.5m class telescope OGLE, LCOGT

Networks 10cm-1.5m telescopes NGTS, Mearth, SPECULOOS, QATAR

Transit hires 2m class telescopes


HARPS/N,

R. 10

Transit hires 10m class telescopes CARMENES, TNG ESPRESSO, CRIRES+, Subaru, Others, **GTC/OPTICAL &** NEREA

Direct imaging 10m class telescopes SPHERE/ESO GPI/Gemini **GTCAO?**

0.5m class telescope OGLE, LCOGT

0.5m class telescope OGLE, LCOGT

Current exoplanet science opportunities

- Nearby star deep RV surveys (CARMENES, others intl.)
- Transit spectroscopy in low resolution : space but also possible from ground (GTC, ESO, Keck... ask E. Pallé)
- Transit spectroscopy in higres : few dozen hot planets with CARMENES & ESO facilities (ESPRESSO, CRIRES+, HARPS,...)
- Complementary observations to surveys RV and transit surveys with small telescopes
- Precision population studies (Gaia DR2+, Kepler/TESS/CHEOPS, ground based hires spec)
- Gaia non-linear mover RV follow-up (and viceversa)

Exoplanet (ground) infrastructure based development opportunities

Robotic small telescope networks (low EUR) : support to space missions & surveys

2-4m class telescope with dedicated hires spectrometer : support to space missions (cutting edge, large consortium contrib).

Hires spectrometer in large aperture : GTC, NEREA concept, cutting edge experiments (GTC Lol & PNAYA submitted)

GTCAO

Technology testbeds and programmes for starlight suppression (AO+coronographs) + coupling to spectrometers (lowres and highres)

- 2-4m class telescopes : advanced suppression experiments
- 10m (GTC) : Direct detection (gas giants) and system testbed for E-ELT

Radio and submm single dish (eq. IRAM) (high risk, but low cost & high gain), and access to intl. radio networks and facilities for experimental programmes

Nano-sat follow-up services : super-stable space photometry (support to other space missions, cost comparable to 1m class ground) & Testbeds to ESA tech development... build up ground antennae infrastructure? (...also business case)