THE ASTRONOMICAL JOURNAL, 157:78 (10pp), 2019 February © 2019. The American Astronomical Society. All rights reserved.

https://doi.org/10.3847/1538-3881/aafacc

A Catalog of Wide Binary and Multiple Systems of Bright Stars from *Gaia*-DR2 and the Virtual Observatory

F. M. Jiménez-Esteban^{1,2}, E. Solano^{1,2}, and C. Rodrigo^{1,2} ¹ Departmento de Astrofísica, Centro de Astrobiología (INTA-CSIC), ESAC Campus, Camino Bajo del Castillo s/n, E-28692 Villanueva de la Cañada, Madrid, Spain; fran.jimenez-esteban@cab.inta-csic.es ² Spanish Virtual Observatory, Madrid, Spain Received 2018 September 17; revised 2018 December 19; accepted 2018 December 20; published 2019 January 28

F. Jiménez-Esteban. E. Solano, C. Rodrigo

F. Jiménez-Esteban REG February 2020

Why wide comoving systems?

- Test stellar formation and evolution theories
 - s > 20,000 au are challenging to binary formation models
- They are valuables indicators of Galactic environment
 - s > 1 pc provide further constrains in the Galactic gravitational potential
- Age indicators

Gaia-DR1 & TGAS

- Tycho-Gaia Astrometric solution for 2 million sources
 - Proper motion $(\sigma \sim 1.3 \text{ mas/yr})$
 - Parallax ($\sigma \sim 0.3$ mas)
- 3 Binary/Mult. Star Catalogues (Andrews et al. 2017, Oelkers et al. 2017, Oh et al. 2017)
 - Sophisticated Galactic models
 - Two binary populations:
 - Wide stable systems, high U and short s, expected to live > 10 Gyr
 - Ultra-wide unstable systems, low U and large s, expected to live < few Gyr (No Andrews et al.)

Gaia-DR1 & TGAS

- Tycho-Gaia Astrometric solution for 2 million sources
 - Proper motion $(\sigma \sim 1.3 \text{ mas/yr})$
 - Parallax ($\sigma \sim 0.3$ mas)
- 3 Binary/Mult. Star Catalogues (Andrews et al. 2017, Oelkers et al. 2017, Oh et al. 2017)
 - Sophisticated Galactic models
 - Two binary populations:
 - Wide stable systems, high U and short s, expected to live > 10 Gyr
 - Ultra-wide unstable systems, low U and large s, expected to live < few Gyr (No Andrews et al.)

Gaia-DR2

- Gaia Astrometric solution for 1,3 billion sources
 - Proper motion ($\sigma \sim 0.06 \text{ mas/yr}$)
 - Parallax ($\sigma \sim 0.04$ mas)
 - G_{BP} G_{RP} & RV

Gaia-DR1 & TGAS

- Tycho-Gaia Astrometric solution for 2 million sources
 - Proper motion $(\sigma \sim 1.3 \text{ mas/yr})$
 - Parallax ($\sigma \sim 0.3$ mas)
- 3 Binary/Mult. Star Catalogues (Andrews et al. 2017, Oelkers et al. 2017, Oh et al. 2017)
 - Sophisticated Galactic models
 - Two binary populations:
 - Wide stable systems, high U and short s, expected to live > 10 Gyr
 - Ultra-wide unstable systems, low U and large s, expected to live < few Gyr (No Andrews et al.)

Gaia-DR2

- Gaia Astrometric solution for 1,3 billion sources
 - Proper motion ($\sigma \sim 0.06$ mas/yr)
 - Parallax ($\sigma \sim 0.04$ mas)
 - G_{BP} G_{RP} & RV

Check the results from TGAS

Gaia-DR2 & Tycho-2: the ~2,5 Million brightest stars (G < 13 mag)

- **1.** Good astrometry \rightarrow 1,936,422 sources
 - RUWE < 1.4
 - Parallax > 0
 - External error < 10% in parallax and both pm components

Gaia-DR2 & Tycho-2: the ~2,5 Million brightest stars (G < 13 mag)

- **1.** Good astrometry \rightarrow 1,936,422 sources
 - RUWE < 1.4
 - Parallax > 0
 - External error < 10% in parallax and both pm components

2. Search for comoving companions

- Similar parallax & pm within 2.5σ (pm corrected form the inertial spin)
- Maximum projected physical separation s = 500,000 au (~2,5 pc)

Gaia-DR2 & Tycho-2: the ~2,5 Million brightest stars (G < 13 mag)

- **1.** Good astrometry \rightarrow 1,936,422 sources
 - RUWE < 1.4
 - Parallax > 0
 - External error < 10% in parallax and both pm components
- 2. Search for comoving companions
 - Similar parallax & pm within 2.5σ (pm corrected form the inertial spin)
 - Maximum projected physical separation s = 500,000 au (~2,5 pc)
- **3.** Multiple comoving systems (> 2 members)

Gaia-DR2 & Tycho-2: the ~2,5 Million brightest stars (G < 13 mag)

- **1.** Good astrometry \rightarrow 1,936,422 sources
 - RUWE < 1.4
 - Parallax > 0
 - External error < 10% in parallax and both pm components
- 2. Search for comoving companions
 - Similar parallax & pm within 2.5σ (pm corrected form the inertial spin)
 - Maximum projected physical separation s = 500,000 au (~2,5 pc)
- 3. Multiple comoving systems (> 2 members)
- 4. RV rejection
 - Gaia-DR2 & RAVE
 - $\sigma < 5 \text{ km/s} \rightarrow \text{RV}$ for 678 candidates pairs
 - Similar RV within $2.5\sigma \rightarrow 16\%$ of pairs had discrepant

Catalogue

11,552 sources grouped in 3741 commoving binary and multiple systems

Galactic coordinates. Red dots: > 7 members

 Table 1. Number of systems according to multiplicity

Members	Systems	similar RV
2	3055	570
3	288	4
4	104	
5	63	
6	42	1
7	34	
8	21	
9	16	
10	14	
$> 10^{a}$	104	
Total	3741	575

Chance alignment contamination

1. Galaxy Specular Star

- Virtually move each star to the opposite side to the Galactic plane
- Search for comoving companions
- Any match is a false positive
- 714 false comoving systems
- False positives increase with s

~ 20% expected contamination

- ~1% for s < 50,000 au
- ~10% for 50,000 < s < 100,000 au
- Up to 40% for the largest separations

Chance alignment contamination

- 2. Expected chance alignment counterparts (ECAC)
 - Searching area: Circle (C) of 500.000 au sky projected radius (R_C)
 - Testing area: Surrounding annulus with outer radius $5 \cdot R_C$
 - Search for comoving companions in the annulus
 - Assumption: Any match in the testing regions is a false positive

$$ECAC = M_A \cdot N_C / N_A$$

ECAC is not dependent on the physical properties of the system

- ECAC = 0 for 4,212 systems
- ECAC > $0 (\sim 31\%)$
 - ~ 5% for s < 50,000 au
 - ~ 18% for 50,000 < s <100,000 au
 - Up to 51% for the largest separations

1,094 Giants (~ 10%)

- SEDs: GALEX & Tycho2 & Gaia-DR2 & APASS & 2MASS & WISE
- Extinction from VO & Gaia-DR2 (or no extinction)
- BT-Settl with solar metallicity and $\neq \log g$ for D/G

Effective temperature

- 11,143 T_{eff} (~ 96%)
- σ ~ 135 K

California-Kepler Survey (High-resolution Spectroscopy)

- Mass ($\sigma < 0.2 \text{ M}_{\odot}$) from T_{eff}
 - Interpolating Tables of Gray (2008)
 - Relationship Reid & Hawley (2005) for later than M0

- Mass ($\sigma < 0.2 \text{ M}_{\odot}$) from T_{eff}
 - Interpolating Tables of Gray (2008)
 - Relationship Reid & Hawley (2005) for later than M0
- **Binding energy** for comoving pairs ($\sigma \sim 18\%$)
 - $U = -GM_1M_2/a$ a: physical separation (a = 1.26s; Fischer & Marcy 1992)

- Mass ($\sigma < 0.2 \text{ M}_{\odot}$) from T_{eff}
 - Interpolating Tables of Gray (2008)
 - Relationship Reid & Hawley (2005) for later than M0
- **Binding energy** for comoving pairs ($\sigma \sim 18\%$)
 - $U = -GM_1M_2/a$ a: physical separation (a = 1.26s; Fischer & Marcy 1992)
- Main sequence lifetime
 - Upper limit for the star age
 - At the MS L~ $M^{3.5} \rightarrow t_{MS} \sim 10M/L=10M^{-2.5}$
- Dissipation lifetime
 - Upper limit for the system age
 - $t_D \sim 1.212 M_{tot}/a$ (Oelker et al. 2017)

t_D > t_{MS} more reliable (but it could be false)

t_D < t_{MS} less reliable (but it could be real)

s & U Distributions

Clear bimodality in agreement with previous results from TGAS

s & U Distributions

Clear bimodality in agreement with previous results from TGAS

Two different populations??

s & U Distributions

Clear bimodality in agreement with previous results from TGAS

Ultra-wide binaries may exits but they should be rare

Our vs. TGAS

Our vs. TGAS

- Large TGAS errors
- Andrews et al. claimed a low contaminations of only 6% (??!!)

Bright Wide Binary/Mult. Stars with Gaia & VO

The SVO archive of double and multiple star systems from Gaia-DR2

Home Data retrieval News Documentation Coverage Map Credits Help-desk

RA (?)	DEC (?)	Radius (?)	Search Reset			
180 : :	0 : :	180 : :	50 results 🛨 default verb. 📑 (Maximum Search Radius allowed: 180 degrees)			

Don't use coordinates as search criterion

[-] Hide additional search fields

Magnitude ranges (?)	Color ranges (?)
•	
•	
•	
GroupSize (?) 🗸 🗸	Sep. Ang (?)
Sep. Sky (?)	Parallax (?)
RUWE (?) -	Teff (?) -
Mass (?) -	U (?)
ECAC (?) -	
Obj.Name: (?)	

First 50 results shown (11550 found)

	RA (J2000) (deg)	DEC (J2000) (deg)	RA (J2000) (hh:mm:ss)	DEC (J2000) (hh:mm:ss)	RA (Gaia-DR2) (?) (deg)	DEC (Gaia-DR2) (?) (deg)	Gaia-DR2 (?)	Tycho2 (?)	Siı
	258.1358	62.8743	17:12:32.58	62:52:27.59	258.1359	62.8745	1631010158460327168	4202-1457-1	HC
	257.7838	62.9523	17:11:08.12	62:57:08.39	257.7840	62.9525	1631025482903503744	4202-885-1	TYC
	66.3542	22.2000	04:25:25.02	22:12:00.01	66.3548	22.1998	145484629809228544	1277-1627-1	*
	66.5769	22.8136	04:26:18.46	22:48:48.90	66.5774	22.8134	145727729254950912	1816-1893-1	*
	68.4049	21.1509	04:33:37.18	21:09:03.06	68.4054	21.1507	144377799556207488	1278-1315-1	HC
	68.2477	15.8190	04:32:59.45	15:49:08.29	68.2482	15.8189	3312644885984344704	1266-1286-1	∨*
	67.6620	15.6919	04:30:38.89	15:41:30.76	67.6625	15.6918	3312628358950130176	1265-1174-1	*
	68,4622	14.8444	04:33:50.92	14:50:39.94	68.4626	14.8443	3309419984020071552	681-1151-1	*
_	CC 0704	17 0070	04-05-00 00	17.55.40.40	CC 0700	17 0070	221 4062077527054200	1000 1040 1	

http://svo2.cab.inta-csic.es/vocats/v2/comovingGaiaDR2/

Conclusions

- We used a simple method to discover commoving systems
- We created an online catalogue with 3,741 commoving systems
- We estimated a contamination rate between 20-30%
 - Contamination increase with the projected physical separation
 - 1-5% for s < 50,000 au \rightarrow 1,040 high reliable binary systems
- TGAS catalogues:
 - High degree of contamination
 - Bimodality disappears
 - We cannot confirm the ultra-wide binary population (RV from Gaia-DR3)

Thank you!!

F. Jiménez-Esteban REG February 2020