MACHINE LEARNING AND GAIA DR2, ON THE HUNT FOR OPEN STAR CLUSTERS

Alfred Castro-Ginard

Gaia RIA — February 18th

PRE-GAIA VIEW OF THE OC POPULATION

- Census counted with around 3000 catalogued objects compiled from heterogeneous data sources [Dias+02][Kharchenko+13][Röser+16]
- Estimated number of OCs ~ 10⁵ [Binney&Tremaine 2008]
- Thought to be complete up to 1.8 kpc

Fig. 4 from Kharchenko+13.

Space density of stellar clusters as a function of distance.

Adopted a completeness limit at 1.8 kpc

AFTER GAIA DR2

- Trying to characterise the catalogued OCs with Gaia DR2, only 1169 objects were found and 60 new OCs were serendipitously detected [Cantat-Gaudin...ACG+18]
- The remaining clusters were either discarded or not seen by Gaia (too distant, IR...)
- Dedicated studies to search for unknown OCs:
- [Castro-Ginard+18]: 23 new objects found with TGAS (validated with Gaia DR2), most of them located in the disc within 1 kpc
 - [Cantat-Gaudin...ACG+19]: 41 new objects in the Perseus direction
- [Castro-Ginard+19]: 53 OCs found with Gaia DR2 in the Galactic anti-centre
 - [Sim+19]: 207 OCs by visually inspecting proper motion diagrams
 - [Liu&Pang19]: 76 high quality OCs, FoF algorithm on 5-D astrometry
 - [Castro-Ginard+20]: 582 new OCs in the Galactic disc (Big Data)

METHOD

- Data mining methodology to automatically search OCs in the Gaia DR2 archive
- Method based on two combined machine learning algorithms:
 - Unsupervised learning: detection of over-densities in the 5-dimensional astrometric space (position, parallax and proper motions)
 - DBSCAN: density based space clustering
 - Supervised learning: classification of over-densities into real OCs or random statistical clusters
 - ANN: to detect isochrone patterns on a CMD

FLOW CHART

PREPROCESSING

- Rejection of stars with high proper motion (>30 mas/yr) or high parallax (> 7 mas)
- Divide the area of study in rectangles of size L deg (to be optimised using simulated data). Consider only $|b| < 10^{\circ}$ (~95% of the known clusters are in this region)
- Shift rectangles to account for the clusters in the border

DBSCAN

Use a density based unsupervised algorithm to search for over-densities in the parameter space [Ester+96]

- No a priori knowledge of the number of clusters
- Finds arbitrary shaped clusters
- Need to define two parameters (e, minPts)

$$d(i,j) = \sqrt{(l_i - l_j)^2 + (b_i - b_j)^2 + (\varpi_i - \varpi_j)^2 + (\mu_{\alpha^*,i} - \mu_{\alpha^*,j})^2 + (\mu_{\delta,i} - \mu_{\delta,j})^2}$$

DBSCAN — DETERMINATION OF EPSILON

Leave minPts to be optimised using simulated data (together with L)

For the determination of e:

- Distance between the kth nearest neighbours in a cluster should be smaller than the distance between stars belonging to the field
- Compute e as:

$$\epsilon = (\epsilon_{kNN} + \epsilon_{rand})/2$$

REAL OCS VS. STATISTICAL CLUSTERS

- DBSCAN finds statistical clusters that may or may not correspond to physical OCs
- Distinguish between them using Gaia photometry: stars in an OC follow an isochrone in a CMD

ANN — INTRODUCING PHYSICAL MEANING

- Need labeled data to train the network
- Train on CMD to recognise the isochrone pattern
 - For the 1229 OCs in [Cantat-Gaudin... ACG+18] plus data augmentation
 - Random field stars selected from the same region

Training - test splits set to 67%-33% Classify 90.27% of the cases to the right class

SO FAR, NO BIG DATA INVOLVED

DBSCAN IN PARALLEL

Run DBSCAN to the whole Galactic disc up to magnitude $G = 17 (10^8 \text{ stars})$ [Castro-Ginard+20]

- DBSCAN on ~10⁷ stars in each box (large enough data)
- Two level parallelization
 - Computation of each box in parallel
 - Parallelization of the DBSCAN algorithm if needed

DBSCAN IN PARALLEL

Use PyCOMPSs framework [Tejedor+15]

- Exploit parallelism of applications at task level
- Task decorated python function
- Builds a task graph taking into account data dependencies
- Schedule and execute application in the distributed environment based on the graph

DBSCAN IN PARALLEL

Use PyCOMPSs framework [Tejedor+15]

plications at

on function g into cies pplication in hent based

DEEP LEARNING FOR OC RECOGNITION

- Introduction of deep learning architecture for a more robust classification (feature extraction)
- Training with real OCs + simulated data (isochrones from Padova
 [Bressan+12]) ~20.000 samples
- Training in two steps
 - Minimise validation loss
 - Minimise false positives from [Castro-Ginard+19]

DEEP LEARNING FOR OC RECOGNITION

- Introduction of deep learning architecture for a more robust classification (feature extraction)
- Training with real OCs + simulated data (isochrones from Padova [Bressan+12]) — ~20.000 samples
- Training in two steps
 - Minimise validation loss
 - Minimise false positives from [Castro-Ginard+19]

METHOD LIMITATIONS

- Detection limited to the most compact cluster in a given LxL area.
- Only clusters with well-defined CMD.

• More than 650 UBC clusters.

• More than 650 UBC clusters.

• More than 650 UBC clusters.

- More than 650 UBC clusters.
- Can detect some features of individual clusters.

- More than 650 UBC clusters.
- Can detect some features of individual clusters.

- More than 650 UBC clusters.
- Can detect some features of individual clusters.

- More than 650 UBC clusters.
- Can detect some features of individual clusters.
- Can detect substructure in richer regions.

- More than 650 UBC clusters.
- Can detect some features of individual clusters.
- Can detect substructure in richer regions.

- More than 650 UBC clusters.
- Can detect some features of individual clusters.
- Can detect substructure in richer regions.
- Still detecting clusters at 1-2 kpc.

- More than 650 UBC clusters.
- Can detect some features of individual clusters.
- Can detect substructure in richer regions.
- Still detecting clusters at 1-2 kpc.

