

### **ESO** Facilities and Gaia

....

#### Bruno Leibundgut





**Gaia Preparations** 

## Input catalogue and calibrations ~46 nights in 2006 until 2011 (Gaia launch 2013)

| Mode    | <u>Telescope</u> | ProgID        | Nights |     | Instrument | Title                                                                                                                               |
|---------|------------------|---------------|--------|-----|------------|-------------------------------------------------------------------------------------------------------------------------------------|
| Service | NTT              | 078.D-0114(A) | 16     | hrs | EMMI       | Exploring the red/near-IR spectra of hot stars in preparation of GAIA                                                               |
| Service | 2.2              | 080.A-9001(A) | 0      | hrs | WFI        | Creating astrometric and photometric calibration fields for GAIA                                                                    |
| Service | 2.2              | 082.A-9018(A) | 0      | hrs | WFI        | Creating astronomic and photometric calibration fields for GAIA                                                                     |
| Service | VLT-Kueyen       | 082.D-0339(A) | 32     | hrs | FLAMES     | Ground-based observations for Gaia's calibrations: Creating initial calibration fields at the Southern Ecliptic Pole                |
| Visitor | VLTI             | 083.D-0029(A) | 1.5    |     | AMBER      | Surface brightness asymmetries in Mira variables and supergiants: A threat to accurate Gaia parallaxes?                             |
| Visitor | VLTI             | 083.D-0029(B) | 1.5    |     | AMBER      | Surface brightness asymmetries in Mira variables and supergiants: A threat to accurate Gaia parallaxes?                             |
| Visitor | NTT              | 083.D-0472(A) | 4      |     | EFOSC2     | Ground-based observations for Gaia's calibrations: spectral energy distributions of peculiar stars across the HR diagram            |
| Visitor | VLTI             | 084.D-0131(A) | 3      |     | AMBER      | Surface brightness asymmetries in Mira variables and supergiants: A threat to accurate Gaia parallaxes?                             |
| Visitor | VLTI             | 084.D-0131(B) | 3      |     | AMBER      | Surface brightness asymmetries in Mira variables and supergiants: A threat to accurate Gaia parallaxes?                             |
| Service | VLT-Kueyen       | 084.D-0427(A) | 20     | hrs | FLAMES     | Ground-based observations for Gaia's calibrations: the Southern Ecliptic Pole initial calibration field                             |
| Service | 2.2              | 085.A-9205(A) | 0      | hrs | WFI        | Photometry and astrometry for the GAIA mission                                                                                      |
| Service | 2.2              | 086.A-9005(A) | 0      | hrs | WFI        | Creating astrometric and photometric calibration fields for Gaia                                                                    |
| Visitor | NTT              | 086.D-0176(A) | 4      |     | EFOSC2     | Ground-based observations for Gaia's calibrations : Establishing the Grid of Spectro-Photometric Standard Stars.                    |
| Service | VLT-Kueyen       | 086.D-0295(A) | 30     | hrs | FLAMES     | Ground-based observations for Gaia's calibrations: the Southern Ecliptic Pole initial calibration field                             |
| Visitor | NTT              | 182.D-0287(A) | 5      |     | EFOSC2     | Ground-based observations for Gaia's calibrations : Establishing the Grid of Spectro-Photometric Standard Stars.                    |
| Visitor | NTT              | 182.D-0287(B) | 5      |     | EFOSC2     | Ground-based observations for Gaia's calibrations : Establishing the Grid of Spectro-Photometric Standard Stars.                    |
| Visitor | NTT              | 182.D-0287(C) | 7      |     | EFOSC2     | Ground-based observations for Gaia's calibrations : Establishing the Grid of Spectro-Photometric Standard Stars.                    |
| Visitor | VLT-Kueyen       | 380.C-0773(A) | 1      |     | UVES       | Ground-based observations for GAIA: Building a homogeneous library of high-quality solar-analogue spectra for Solar-System research |



#### +ES+ 0 +

### Gaia Observations

#### Observe the Gaia satellite every night with the VST





https://sci.esa.int/web/gaia/-/61328-tracking-gaia-with-eso-vlt-survey-telescope-vst https://www.eso.org/public/news/eso1908/

Gaia Legacy, Barcelona - 18 February 2020



### La Silla Paranal Facilities

VLT Instrumentation operating, in assembly and planned Covers the available optical infrared wavelengths 300nm to 20µm Angular resolution from seeing limit to 50 µ-arcseconds ES, FLAMES, VISIR, HAWK-I, X-Shooter, AOF, KMOS, FORS2, U MUSE, SPHERE, ESPRESSO, CRIRES, ERIS, MOONS > PIONIER, GRAVITY, MATISSE VISTA NT VIRCAM, 4MOST EFOSC2, SOFI, SOXS VST 3.6m  $> \Omega Cam$ HARPS, NIRPS



### **VLT Instruments 2020**









**UVES** 



FLAMES





**KMOS** 





#### **CRIRES**



SPHERE







MUSE



HAWK-I





### VLT unique capabilities



## **Multi-Wavelength Astrophysics**

- ESO offers access to optical, infrared and sub-mm wavelength ranges
- VLT/I provide many resolution scales
- Operational model adapted to fast reactions/transient targets



Figure 1: Wavelength-Spectral Resolving power diagram for the VLT instruments of 1<sup>st</sup> and 2<sup>nd</sup> generation.



Figure 2: Wavelength-angular resolution diagram for the VLT/I instruments of 1<sup>st</sup> and 2<sup>nd</sup> generation.

■■ == += ■ ■ ■ ■ ■ ■ == ■ ■ == += += \*\* \*\*



# Science with Paranal/La Silla telescopes

### Contributions to nearly all of astrophysics

- Solar system
  - Trans-Neptunian Objects, asteroids, comets
- Exo-planets
  - direct imaging, temperate planets, planetary systems
- Stellar physics
  - metal-poor stars, supernovae, neutron star mergers
- Milky Way structure
  - galactic centre, distances
- Galaxy evolution
  - redshift surveys, rotation curves, absorption studies

#### Cosmology

accelerating universe, background temperature, chemical evolution



### **Upcoming instruments**

CRIRES+ (2020): near-IR high-R spectrograph

> Upgrade wavelength coverage; polarimetry

ERIS (2021): near-IR AO imager / spectrograph

- Imager, coronagraph, low-resolution spectrograph 1-5µm (replaces NACO)
- IFU 1-2.5µm (SINFONI upgrade)

MOONS (2022): near-IR medium-resolution MOS
 > 1001 fibres over 500 arcmin<sup>2</sup> (full VLT field-of-view)

### Instruments for the 4m telescopes

NIRPS for the 3.6m (La Silla)

- Complement HARPS in the near-IR for accurate radial velocities
- SoXS for the NTT (La Silla)
  - Vis-NIR medium-resolution spectrograph for transient follow up
- 4MOST for VISTA (Paranal)
  - Visible MOS
  - > Operated by consortium



2020



#### +ES+ 0 +

### NIRPS

### NIRPS @ 3.6m : High Accuracy NIR Spectrograph

- > NIR (970-1800 nm)
- > High Resolution: R>80000
- AO-Assisted
- Simultaneous observations with HARPS

$$> v_{rad} < 1 m/sec$$





## SOXS

### SOXS @ NTT

> Broad-band spectrograph, 350nm through 2.0µm

> R ~ 4,500 (3,500−6,000)

- >Two arms (UV-VIS + NIR)
- > S/N ~ 10 spectrum, 1-hr exposure at R ~ 20

> Acquisition camera (3'x3') to perform photometry in

ugrizY





Vis

# +ES+

### 4MOST

### 4MOST will conduct only surveys

- > 70% GTO to consortium for first
  - 5 years of operations
    - builds instrument and operates it
    - handles all survey data

10 consortium GTO surveys
 > see talk by Christina Chiappini
 Call for Letters of Intent for community surveys
 > Deadline: 28 February 2020

#### The Messenger



#### +ES+ 0 +

### **4MOST Overview**

#### Main science drivers

- Cosmology, galaxy evolution, high-energy, transients, Milky Way structure
- > Optical spectroscopy complement to
  - Euclid/LSST/SKA
  - eROSITA
  - Gaia
- Surveys only
  - runtime: 5 years
- Build and operated by consortium
  - PI: Roelof de Jong (AIP)
- Expected start of operations: 2022





### **4MOST Consortium Surveys**

#### Description in Messenger 175

https://www.eso.org/sci/publications/messenger/toc.html?v=175&m=Mar&y=19

#### Presented at 4MOST workshop in May

 Table 2. 4MOST Consortium Surveys and their Principal Investigators.

de Jong et al. 2019

| No  | Survey Name                                      | Survey (Co-)PI                        |
|-----|--------------------------------------------------|---------------------------------------|
| S1  | Milky Way Halo LR Survey                         | Irwin (IoA), Helmi (RuG)              |
| S2  | Milky Way Halo HR Survey                         | Christlieb (ZAH)                      |
| S3  | Milky Way Disc and Bulge LR Survey (4MIDABLE LR) | Chiappini, Minchev, Starkenburg (AIP) |
| S4  | Milky Way Disc and Bulge HR Survey (4MIDABLE HR) | Bensby (Lund), Bergemann (MPIA)       |
| S5  | Galaxy Clusters Survey                           | Finoguenov (MPE)                      |
| S6  | AGN Survey                                       | Merloni (MPE)                         |
| S7  | Galaxy Evolution Survey (WAVES)                  | Driver (UWA), Liske (UHH)             |
| S8  | Cosmology Redshift Survey                        | Richard (CRAL), Kneib (EPFL)          |
| S9  | Magellanic Clouds Survey (1001MC)                | Cioni (AIP)                           |
| S10 | Time-Domain Extragalactic Survey (TiDES)         | Sullivan (Southampton)                |

ႍ ▮▌ ▶ := + ▋] ■ ▌] ▋] □] \_ ... 0 쿄 := != !] ऄ;









### **Planet forming disks**

- Results from ALMA and VLT/SPHERE and VLT/MUSE
- DSHARP: presence of companion (below; Perez et al. 2018)
- Substructure due to Jovian planet (right; Ruiz-Rodriguez et al. 2019)





# Circumplanetary disks detected with







#### Gaia Legacy, Barcelona - 18 February 2020

∆RA(mas)

Wavelength (um)



Perez et al. (2019)



### The Survey Telescopes

#### VST 2.6m for optical and VISTA 4.1m for infrared observations







### **ESO Public Surveys**

VST

VPHAS+, ATLAS (extensions), KiDS

 VISTA round 1 surveys
 VVV, VIKING, UltraVISTA, VMC, VIDEO, VHS

VISTA round 2 started



VINROUGE, UltraVISTA extension, VVVX, VEILS, GCAV, VISIONS, SHARKS

completion expected end 2020

Spectroscopic Surveys
Gaia-ESO, PESSTO, VANDELS, LEGA-C



### VLT2030 workshop

https://www.eso.org/sci/meetings/2019/VLT2030.html

- Review the scientific and facilities' landscape
- Invite community to discuss their ideas and instrumental projects
- Probe what the community can do in addition to ELT instruments





### **VLT Opportunities**

#### Four 8m telescopes

- ➢ flexibility
- > scientific throughput
  - 1200 observing nights/year
- Successful operational model
  - > expand existing model to allow new modes
    - high time resolution photometry and spectroscopy
    - faster turnaround (currently DDT)
    - closer interaction with user, e.g. remote observing

Telescope system

- > spatial resolution from 1 degree to 2 mas
- wavelength coverage from 320nm to 20µm
- spectral resolutions from a few to 100000



### **Strategic planning**

#### Identify strengths

- Very flexible Operation model
- Variety of instruments: workhorses and specialized
- Uniqueness of the VLT facility
- Complement ELT/JWST in the blue
- Existing expertise in ESO and community
- Identify missing capabilites

  - > High-resolution MOS for Galactic science

#### + ES+ 0 +



#### Identify a set of new capabilities

- high-angular resolution
  - interferometry
    - increase sensitivity
  - adaptive optics
    - increase field (multi-conjugate AO)
    - improve correction (Strehl, XAO)
- > new parameter space
  - blue IFU
- high spectral resolution multiplex
  - "HR-MOS"

Maintain competitive existing instrumentation



### **HR-MOS**

Most planned MOS have R~4-20k, often on 4m telescopes (4MOST, WEAVE)

Science cases requiring R~50k on 8m:

- Velocities for Gaia stars R>16
- r-process origin
- detailed abundances of 100's thousands of halo stars
   ...
- Most requested facility in 2015 ESO users poll
   ESO willing to probe the idea in the community



Gaia Legacy, Barcelona - 18 February 2020

