

WEAVE and Gaia: The 6D phase space

Maria Monguió ICCUB-IEEC

In collaboration with the WEAVE instrument and science teams

Barcelona, February 19th 2020

Outline

- WEAVE technical capabilities
- Can I apply for WEAVE time?
- WEAVE surveys
 - Galactic archaeology
 - Stellar Circumstellar and Interstellar Surveys
 - White dwarfs

Telescope, diameter	WHT, 4.2m	
Field of view	2° Ø	
Number of fibers	960 (plate A)/940 (plate B)	
Fiber size	1.3″	
Number of small IFUs, size	20 x 11″x12″ (1.3″ spaxels)	
LIFU size	1.3'x1.5' (2.6" spaxels)	
Low-resolution mode resolution	5750 (3000–7500)	
Low-resolution mode wavelength coverage (Å)	3660–9590	
High-resolution mode resolution	21000 (13000–25000)	
High-resolution mode wavelength coverage (Å)	4040-4650 4730-5450 5950-6850	

FoV=2deg

- Fibres:
 - 960 PlateA

MOS

- 940 PlateB
- Fibre size 1.3"

LIFU

- Size: 1.3'x1.5'
- Spaxel: 2.6"

miniIFU

- 20 mIFUs
- Size: 11"x12"
- Spaxel: 1.3"

IFU modes cannot be used simultaneously with MOS fibres.

Grating - LR R=5750 (3000-7500A) Coverage: 3660-9590

WEAVE_BLUE_LOW_UL.F.Cl, 85mu fibre, 154mu fibre spacing

Grating - HR • R=21000 (13000-25000A)

 Coverage: 5950-6850 + 4040-4650 or 4730-5450

E

Wave

A bit of politics....

- WEAVE is a consortium of:
 - Spain
 - The Netherlands
 - UK
 - France
 - Italy
- 70% of 5 years of observing time to WEAVE surveys (226.4 nights/year)

• (+2?)

- 30% remaining time to ING
 - WEAVE or other WHT instruments

Under discussion

- PI applications to WEAVE
- Moving ISIS proposals to WEAVE

Timeline

- September 2020: First light
- Followed by commissioning
- Survey Verification Oct-Nov 2020
- Survey start before end 2020
- PI applications for WEAVE in 2021B

WEAVE Science team

- Project Scientist: Scott Trager (Groningen)
- Deputy PS: Shoko Jin (Oxford/Groningen)
- Surveys:
 - Galactic Archaeology (Vanessa Hill, OCA)
 - Stellar Circumstellar & Interstellar Physics (Janet Drew, UCL)
 - White Dwarfs (Boris Gaensicke, Warwick)
 - WEAVE-LOFAR (Dan Smith, Hertfordshire)
 - Stellar Populations Survey (Bianca Poggianti, INAF-Padova)
 - Galaxy Clusters (José Alfonso López Aguerri, IAC)
 - QSO (Mat Pieri, LAM)
 - Apertif (Jesus Falcón Barroso, IAC)

- LR disc (T. Antoja, B. Famaey)
- HR halo (E. Tolstoy, V. Hill)
- High Latitude LR (G. Battaglia, V. Belokurov)
- Open Clusters (A. Vallenari)

LR disc (T. Antoja, B. Famaey)

• HR halo (E. Tolstoy, V. Hill)

- Chemical labelling and age-dating
 - Thin/thick disc through chemical tagging
 - Very metal poor stars
 - Red giants in northern Globular clusters

High Latitude LR (G. Battaglia, V. Belokurov)

- Formation scenarios of the halo
- RGBs in the outer halo (<100kpc)
- Total mass of the Milky Way
- Substructure and streams
- Dwarf satellite galaxies
- Dark matter

Open Clusters (A. Vallenari)

- As probes of Galactic disc
- Formation, evolution, disruption of clusters

2000

- Stellar evolution
- ~300 clusters in HR or LR.

White Dwarfs

- Used for calibrations: few WD in each OB
 - Only two free parameters (Teff, logg)
 - Ideal to compute calibration function

White Dwarfs

- But also interesting science (with ~70 000 WD):
 - Complete sample at d<50pc with п, Teff, logg.
 To study IMF, SFH, scale height
 - WD polluted by planetary debris
 - Identification of rare white dwarf species

- Covers the northern Galactic plane in LR
 - Stellar evolution
 - Galactic structure
 - Inter stellar medium: 3D extinction, law variation
- **Different** type of targets:
 - BA stars as Galactic probes
 - Stellar evolution: OB stars, BA, RSG, YSO, WD/IB, Be, CEP
 - Ionised ISM, PN, SNR

- LR survey (J.Drew)
- HR surveys:
 - HR Cygnus (A.Herrero)
 - HR Anticentre (M.Monguio)

HR Cygnus

- OB stars:
 - Accurate parameters
 - rotational velocity,
 - Abundances
 - binary fraction

- Stellar formation in the Cygnus region
 - Theory of stellar evolution
 - Spatial patterns in kinematics, abundances

- HR Anticentre (mainly BA stars):
 - Structure and dynamics in the outer Galaxy
 - Trends vs R (age, metallicity, kinematics)
 - Larger structures (spiral arms, warp, flare, streams)
 - In comparison with older GA targets
 - Stellar physics at intermediate masses
 - Chemical peculiarity binarity rotation
 - Star formation in the AC:
 - Young clusters (OB,YSO)
 - Associated to spiral arms?

- IPHAS+UVEX : i, H α , r(x2), g, U_{RGO}
- WFC@INT
- Northern Galactic plane 30<l<215, |b|<5 •
- Astrometry based on Gaia
- Photometric calibration based on PanStarrs (gri)

Property	Value	Comment
Telescope	2.5-m Isaac Newton Telescope (INT)	
Instrument	Wide Field Camera (WFC)	
Detectors	Four 2048×4100 pixel CCDs	
Pixel Scale	$0.33 \text{ arcsec pixel}^{-1}$	
Filters	$i, H\alpha, r, g, U_{RGO}$	2 r epochs available
Magnitude System	Vega	m_{AB} provided as alternative
Exposure times (seconds)	$i:10, H_{\alpha}:120, r:30, g:30, U_{RGO}:120$	
Saturation magnitude	$12(i), 12.5(H\alpha), 13(r), 14(g) 14.5(U_{RGO})$	
Limiting magnitude	$20.4(i), 20.5(H\alpha), 21.5(r), 22.4(g), 21.5(U_{RGO})$	median 5σ detection over the noise.
median PSF FWHM (arcsec)	$1.0(i), 1.2(H\alpha), 1.1(r), 1.3(g), 1.5(U_{RGO})$	
Survey area	~ 1860 square degrees	
Footprint boundaries	$-5^{\circ} < b < +5^{\circ}, 30^{\circ} < \ell < 215^{\circ}$	
Beginning/end dates of observations	August 2003 – November 2018	see Figure 1
Table 1 Key properties of the merged IGAPS survey		

1. Key properties of the merged IOAI 5 survey.

	$N(\times 10^{6})$	N ($\times 10^{6}$)		
	1((/10))	errBits=0		
IGAPS (surveys combined)				
All	295.4	205.2		
IPHAS	264.3	186.1		
UVEX	245.8	170.7		
IPHAS + UVEX	214.7	151.6		
IPHAS				
$i, H\alpha, r_I$	168.4	115.4		
i, r_I	31.7	25.2		
i	25.6	18.9		
$H \alpha$	15.7	11.2		
r_I	16.3	12.0		
UVEX				
r_U, g, U_{RGO}	54.3	30.0		
r_U, g	101.1	72.7		
r_U	76.2	60.6		
8	12.7	6.8		

IGAPS survey

Astronomy & Astrophysics manuscript no. output February 14, 2020 ©ESO 2020

IGAPS: the merged IPHAS and UVEX optical surveys of the Northern Galactic Plane

M. Monguió^{1,2}, R. Greimel³, J. E. Drew^{1,4}, G. Barentsen^{1,5}, P. J. Groot^{6,7,8,9}, M. J. Irwin¹⁰, J. Casares^{11,12}, B. T. Gänsicke¹³, P. J. Carter^{13,14}, J. M. Corral-Santana^{11,15}, N. P. Gentile-Fusillo^{13,15}, S. Greiss¹³, L. M. van Haaften^{6,16}, M. Hollands¹³, D. Jones^{11,12}, T. Kupfer^{6,17}, C. J. Manser¹³, D. N. A. Murphy¹⁰, A. F. McLeod^{6,16,18}, T. Oosting⁶, Q. A. Parker¹⁹, S. Pyrzas^{13,20}, P. Rodríguez-Gil^{11,12}, J. van Roestel^{6,21}, S. Scaringi¹⁶, P. Schellart⁶, O. Toloza¹³, O. Vaduvescu^{11,22}, L. van Spaandonk^{13,23}, K. Verbeek⁶, N. J. Wright²⁴, J. Eislöffel²⁵, J. Fabregat²⁶, A. Harris¹, R. A. H. Morris²⁷, S. Phillipps²⁷, R. Raddi^{13,28}, L. Sabin²⁹, Y. Unruh³⁰, J. S Vink³¹, R. Wesson⁴, A. Cardwell^{22,32}, R. K. Cochrane²², S. Doostmohammadi^{22,33}, T. Mocnik²², H. Stoev²², L. Suárez-Andrés²², V. Tudor²², T. G. Wilson²², and T. J. Zegmott²²

(Affiliations can be found after the references)

Received December 17, 2019; accepted February 12, 2020

Thanks!

Operational Rehearsals

- 3 Operational Rehearsals:
 - OpR1: pure data flow from "telescope" to data reduction systems to archive, no science involvement
 - OpR2: data flow from "telescope" to data reductions to archive using science simulations
 - OpR3: full simulation of survey strategy and data quality

OpR3

- OpR3b: Three weeks of survey data were simulated,
 - including data flow
 - Configure tool
 - Analise spectra
 - Check physical parameters pipelines

OpR3

- OpR3c: 18 months of scheduling
 - Historical weather patterns
 - OB submission every trimester

Survey verification

- Open call in August 2019
- 70-30% between survey-PI time
- Proposals being reviewed

Resolution

LR blue

1000

120

LR red

