Stellar atmospheric parameters of FGKM-type stars from high-resolution optical and near-infrared CARMENES spectra

Emilio Marfil Universidad Complutense de Madrid (UCM)

Gaia-RIA workshop

Expanding the Gaia legacy: the role of Spanish ground-based facilities Institut de Ciències del Cosmos (ICCUB), Barcelona 17-19 Feb 2020

The CARMENES instrument

High-resolution, optical and near-infrared echelle spectrographs
 @ 3.5 m telescope at the Calar Alto observatory, Almería, Spain.

VIS channel $\Delta \lambda = 520 - 960 \text{ nm}$ R = 94 600 NIR channel $\Delta \lambda = 960 - 1710 \text{ nm}$ R = 80 400

Radial velocity (RV) survey of ~300 M dwarfs to detect Earthmass planets (Guaranteed Time Observations programme). [Quirrenbach et al. 2018, SPIE]

The CARMENES stellar library

• 140 CARMENES spectra of bright dwarfs, giants, and supergiants with spectral types from O4 and M6 (+ Sun).

[Caballero et al. in preparation]

Monthly Notices of the ROYAL ASTRONOMICAL SOCIETY	9
MNRAS 00, 1–38 (2020) Advance Access publication 2020 January 10	doi:10.1093/mnras/staat
Staller at a second as a second se	

Stellar atmospheric parameters of FGK-type stars from high-resolution optical and near-infrared CARMENES spectra

E. Marfil[®],¹* H. M. Tabernero,^{2,3} D. Montes[®],¹ J. A. Caballero,² M. G. Soto,⁴ J. I. González Hernández,^{5,6} A. Kaminski,⁷ E. Nagel,⁸ S. V. Jeffers,⁹ A. Reiners,⁹ I. Ribas,^{10,11} A. Quirrenbach⁷ and P. J. Amado¹²

Stellar atmospheric parameters of the 65 FGK-type stars found in the library have already been derived in Marfil et al., 2020, MNRAS, 492, 4 using the EW method (STEPAR code, Tabernero et al., 2019, A&A, 628, A131).

FGK-type stars in the CARMENES stellar library [Marfil et al. 2020]

FGK-type stars in the CARMENES stellar library [Marfil et al. 2020]

Table 1. Number of Fe I and Fe II lines reported in this work, Sousa et al. (2008, Sou08), Andreasen et al. (2016, And16), and Tabernero et al. (2019, Tab19), from 5300 to 17100 Å.

Reference	Line list/region	#lines	
	_	Fei	Fe II
This work	MRD	386	16
This work	MPD	295	9
This work	MRG	306	13
This work	MPG	379	4
This work	CARMENES VIS channel	437	21
This work	CARMENES NIR channel	216	2
This work	Globally	653	23
Tab19	MRD	112	8
Tab19	MPD	82	8
Tab19	MRG	72	7
Tab19	MPG	95	5
Tab19	Globally	175	14
Sou08	_	172	19
And16	_	272	12

Stellar atmospheric parameters (STEPAR)

Total number of selected Fe I and Fe II lines

Figure 7. Kiel diagram (log g versus log $T_{\rm eff}$) of the sample along with the YaPSI isochrones at 0.1, 0.4, 0.6, 1, 4, and 13 Ga (for Z = 0.016, see Spada et al. 2017).

FGK-type stars in the CARMENES stellar library [Marfil et al. 2020]

Figure 11. Comparison between the stellar atmospheric parameters obtained with STEPAR including the VIS and NIR channels of CARMENES and the literature values. The blue filled circles are the *Gaia* benchmark stars in our sample. The remaining stars in the sample are shown with the blue open circles. The dashed black lines indicate the one-to-one relationship. From left to right: $T_{\rm eff}$, log g, and [Fe/H].

Figure 12. Same as Fig. 11 but restricting the analysis to the Fe I and Fe II lines found in the optical wavelength region covered by the VIS channel of CARMENES.

VIS channel

7

VIS channel

NIR channel

Gaia Benchmark Stars

 Fundamental parameters obtained independently from spectroscopy, e.g. *T*_{eff} from *L* = 4π*R*²σ*T*_{eff}⁴ (Stefan-Boltzmann law) log *g* from *g* = *GM*/*R*² (from Newton's law of universal gravitation)

 However, key information is needed to apply these formulae, such as: distance bolometric flux

interferometric radius

Assess any spectroscopic method aimed at the automated analysis of cool stars
 [Jofré et al. 2014, 2018; Heiter et al. 2015]

Overview

- The CARMENES RV survey treasures a wealth of data, i.e. several thousands of high-resolution, high S/N, optical and near-infrared M-dwarf spectra.
- This leads not only to the discovery, orbital and atmospheric characterisation of exoplanets but also to <u>statistically significant conclusions about the nature of M</u> <u>dwarfs</u> (e.g. activity, stellar atmospheric parameters, kinematics).

[Reiners et al. 2018]

• The characterisation of M dwarfs as host stars is a key ingredient in planet formation theories (e.g. impact of stellar metallicity and activity on exoplanets).

Overview

- Passegger et al. (2018): T_{eff}, log g, and [Fe/H] for 300 M dwarfs in the optical (235 observed with CARMENES) fitting PHOENIX-ACES synthetic spectra.
- Passegger et al. (2019): T_{eff}, log g, and [Fe/H] for 282 CARMENES GTO M dwarfs from optical, near-infrared, and optical + near-infrared (PHOENIX-SESAM)
- Schweitzer et al. (2019): Masses and radii of 293 CARMENES GTO M dwarfs

 $T_{\rm eff}$ following Passegger et al. (2018)

L obtained from integrated broadband photometry + *Gaia* DR2 parallaxes

10

Molecular
bands (TiO)
Atomic lines
(Fe I, Ti I)

Marfil et al. in prep.

11

Probability distribution functions of the stellar atmospheric parameters $(T_{eff}, \log g, [Fe/H])$

However, M dwarfs are not easy!

- Magnetic fields may distort line profiles via e.g. Zeeman broadening
 - [Shulyak et al. 2018, Passegger et al. 2019]
- Degeneration log g and [Fe/H] in the parameter space
 [Passegger et al. 2018]
- Telluric contamination (near-infrared) [Nagel et al., submitted]

Thank you for your attention!

