

Unión Europea Fondo Europeo de desarrollo Regional "Una manera de hacer Europa"

Universidad de La Laguna

EMIR & MIRADAS in the Gaia era: status and prospects

F. Garzón @ EMIR&MIRADAS Teams

Expanding the Gaia legacy: the role of Spanish ground-based facilities

*EMIR is a NIR Imager and multi-object spectrograph, acting as a common user instrument for GTC

Spectral Range	0.9-2.5µm[1.1-2.5µm]	MOS mode	
Top priority	MOS in K band	FOV	6,7×4 arcmin (55 slitlets)
Spectral Resol.	5000,4250,4000 (JHK) ~987 HK + YJ	Sensitivity	K~20.1 in 2h @ S/N=5 (continuum)
Spectral coverage	1 single window/exp.		1.6x10 ⁻¹⁸ erg/s/cm²/Å in 4h @ S/N=5 (line)
Detector	HAWAI2 2048 ²	Image mode	
Plate Scale	0.2 arcsec/px	FOV	6.7×6.7 arcmin
Image quality	θ ₈₀ < 0.2 arcsec	Sensitivity	K~22.8 in 1h @ S/N=5 in 0.6 arcsec aperture

EMIR CSU

Immediate Gaia synergy

for the reference objects, at least

F. Garzón, EMIR&MIRADAS. RIA-GAIA, febrero 2020

Scientific Drivers

₩ Goya:

+Census of galaxian populations at z~1-2.5

∗Galep

+ Search the stellar population of the MW

✤ MasGomas

 New clusters of massive stars in the inner Galaxy

∗East sci. cases

- * Use EMIR to obtain near IR spectroscopy of many thousands sources
 - + vast majority located in the inner Galaxy
 - + selected from their position on IR colour-magnitude diagrams
 - + will include disc, bar, bulge and ring sources.
- NIR spectra (H & K bands) will allow accurate determination of the spectral type of the sources.
 - + series of molecular lines, OH, H2O and CO
 - + metallic lines: Na, Ca, Fe, etc.
 - + ..
- * Features relatively spread out between 1.5 and 2.4 microns
 - + much higher resolution is not required.
- * The relative strength of these lines coupled with the overall form of the spectra will allow the spectra type to be accurately determined.

GALEP

EMIR will obtain ~20 - 40 spectra at once.

It can map:

- -H-K window at R~1000.
- -JHK windows at R~4000.

In a few nights, a statistically significant sample (~2000 spectra) can be gathered, and from it infer some of the properties of the Galactic structures of interest.

GALEP targets

GALEP targets

GALEP

200

400

600

GALEP and EMIR instr. model

pixel

800 1000 1200 1400 1600 1800 2000 2200 2400 2600 2800

GALEP status

- *Analysing the pilot survey
- *Refining the obs. strategy
- *Revisiting target selection
- *Adapting the DRP output for the Ferre code

Galep K band spectra

Current Status

*Fully operative in all obsmodes **T**maging: ✓ BrBa: Y,J,H,Ks NaBa: F1230, FeII, Brg, H2(1-0) + cont. ★LS: ✓ Widths=0.4, 0.6, 0.8, 1.2, 5 arcsec ✓ 3 positions in the EMIR FOV ★MOS: ✓OSP operative Target acq. mode developed and in use

*Image & Spec DRP fully working

Current Status and prospects

- Two main problems limits EMIR performances, mostly for faint sources:
 Excessive RON noise.
 - Higher Texp for the same SNR
 Valid mostly for up to moderately faint sources (K <~19)
 Some filtering scripts of limited success (web site)
 New detector (Hw2RG) is coming
 - Relative drift bet. EMIR and the GTC A&G system
 - Limits the single int. time to ~1h IF good initial pos.
 Working with GTC to identify and fix this.

Some Goya results

Refined positioning

F. Garzon, EMIRAMIRADAS. RIA-GAIA, TEDrero ZUZU

GTC: S19A + S19B

- Strong oversubscription in the 10 12 hours R.A. range.
- Filler programs are <u>being executed</u> due to the lack of proposals for bright time. <u>EMIR time!</u>.

E AN ROFIS

MIRADAS

- MIRADAS is a near-infrared multi-object echelle spectrograph operating at spectral resolution R=20,000 over the 1-2.5 µm bandpass on the GTC
- The MIRADAS Consortium includes:
 - University of Florida
 - Universidad de Barcelona; Institut d'Estudis Espacials de Catalunya
 - Instituto de Astrofísica de Canarias
 - Universidad Complutense de Madrid
 - >45 science team members from >10 institutions in 3 countries

MIRADAS Consortium

CONSOLIDER ING

Massive Stars MIRADAS

Ignacio Negueruela Carlos González Amparo Marco Francisco Najarro Sebastián Ramírez Toni Marín Artemio Herrero

MIRADAS meeting IAC, Tenerife, March 8, 2012

DRC: Chemo-Dynamics of Milky Way

- Structure of our own Milky Way galaxy still poorly understood
- Major focus of GAIA mission and other surveys (including APOGEE)
- MIRADAS will reach MUCH deeper into the inner MW
- Strong complement to photometric and "near-MW" surveys

DRC: Chemo-Dynamics of Milky Way

- Abundances and kinematics of RGB stars
- Key for grasping MW structure and evolutionary history
- CD history of the inner MW and Sgr A* black hole mass evolution

• MIRADAS spectral resolution and multiplexing revolutionize this field!

DRC: Blue Compacts Dwarfs @ z~0.5-1

- BCDs key for galaxy assembly & evolution
- z~0.5-1.0 is next frontier for this research area
- Narrow lines + redshift make R=20K and near-IR best match

DRC: Spectro-Polarimetry

- Physical effects of magnetic fields produce polarization signatures ~3-9x larger in NIR than optical (fundamental quantum physics of the line transitions)
- Signatures also increase with spectral resolution in many interesting cases
- Need large telescope collecting area to get high SNR required for measurements

DRC: Spectro-Polarimetry

Magnetic Field Sensitivity in Sun-like Stars

MIRADAS: Other Science

- Many other science cases defined and expanded by MIRADAS Science Team members:
 - Milky Way Structure & GAIA Follow-up
 - Massive Star Formation Feedback
 - RV searches for extra-solar planets
 - Evolution of Angular Momentum in Young Low-mass Stars
 - Dynamical Studies of X-Ray Binaries
 - Abundance anomalies in X-ray Binaries & CVs
 - Magnetic fields of secondary stars in CVs
 - Metal-poor Bulge stars
 - Relativistic jet formation in SS 433
 - Dwarf galaxies in the Coma Cluster
 - Etc.

MIRADAS: expected lim. Mags.

Wavelength

MIRADAS Schematic Overview

MIRADAS Multiplexing

- 12 cryogenic probe arms patrol the 5arcmin diameter
 FOV at the GTC
 focal plane
- Pickoff mirrors at the probe tips select targets (3.7x1.2arcsec FOV) and relay them to the rest of the instrument

MIRADAS Multiplexing

- 12 cryogenic probe arms patrol the 5arcmin diameter
 FOV at the GTC
 focal plane
- Pickoff mirrors at the probe tips select targets (3.7x1.2arcsec FOV) and relay them to the rest of the instrument

MIRADAS Macro-Slicer

3-slice integral field unit
Accepts 3.7x1.2-arcsec field
fr/each probe
Outputs 3x 3.7x0.4-arcsec
pseudo-longslit for each
probe

Maintains high throughput and constant slitwidth/resolution across range of seeing (0.4-1.2-arcsec)

MIRADAS Echelle

Echelle Grating Blaze photo

MIRADAS Mechanical: Vacuum Jacket

MIRADAS Status: Other

- H2RG science-grade detectors delivered; installed into mosaic
- All major optics delivered
- Vacuum jacket fabrication complete
- Cryo-mechanisms being tested; almost all complete
- System integration underway, nearing completion
- Key software development on-schedule at IAC, UB, UF
- 4 MXS probe arms funded by GTC contract
- 5 externally-provided probe arms (3x Florida; 2x USP/Brazil)
- 3 additional arms ⇒ funding secured; fabrication completed, assembly and testing underway

MIRADAS Schedule

- Successful Final Design Review held in Gainesville, FL May 2015
- Currently in the phase of AV
- Subsystem AIV nearly complete
- Full system integration and testing underway
- Aim for delivery in mid-2020; Commissioning expected Q3 2020