Arqueología Galáctica: Búsqueda de subestructura en la Vía Láctea.

Sel+02 3e+02 4.5e+02 6e+02 7.5e+02 9e+02 1.0e+03 1.2e+03 1.4e+05 Nstars #stars/pole)

Grupo de Cosmología a escalas Galáctica y subgaláctica

EL PROBLEMA

¿Es el grado de subestructura en el halo de la Galaxia consistente con Λ-CDM?

Grupo de Cosmología a escalas Galáctica y subgaláctica

¿Por qué el halo?

- •El modelo ACDM predice que una galaxia como la nuestra se forma de la fusión de un gran número de galaxias satélite.
- El halo de nuestra galaxia tiene una "memoria larga" de eventos de acreción.

Aunque ha habido una gran cantidad de descubrimientos, necesitamos una muestra completa dentro de límites bien definidos, para poner a prueba el modelo cosmológico.

Grupo de Cosmología a escalas Galáctica y subgaláctica

Gaia: una oportunidad única.

Necesitamos un sondeo muy profundo y completo del halo estelar que provéa información cinemática y fotométrica.

- Cubrimiento de todo el cielo
- Magnitud límite de completez: 20
- Número esperado de estrellas incluidas: 109
- Precisión astrométrica: $\delta\pi$ ~ 20 µarcsec (@ V=15), δv_r ~1–10 km/s (@ V~16)
- Fotometría (4 canales de banda ancha, 11 de banda intermedia)
- Fecha estimada de lanzamiento: ¿2013?

II Reunión

Científica

de la REG

EL GRUPO DEL OTRO LADO DEL ATLÁNTICO

Grupo de Cosmología a escalas Galáctica y subgaláctica

LOS PERSONAJES

Grupo de Cosmología a escalas Galáctica y subgaláctica

Grupo de Cosmología a escalas Galáctica y subgaláctica

Luis Aguilar

Anthony Brown

Bárbara Pichardo

Pedro Colín

Vladimir Avila

Leticia Carigi

II Reunión Científica de la REG

Héctor Velázquez

Fabiola Hernández

Gustavo Bruzual

Grupo de Cosmología a escalas Galáctica y subgaláctica

Octavio Valenzuela

Grupo de Cosmología a escalas Galáctica y subgaláctica

Buscando materia oscura

La simulación hidrodinámica

Definiendo las condiciones iniciales

La simulación de N cuerpos

Vladimir encuentra un "merging tree"

Las galaxias se forman en los picos de densidad

Halos oscuros

Grupo de Cosmología a escalas Galáctica y subgaláctica

LA ESTRATEGIA

Grupo de Cosmología a escalas Galáctica y subgaláctica

El método usado

Grupo de Cosmología a escalas Galáctica y subgaláctica

TRABAJO REALIZADO

Grupo de Cosmología a escalas Galáctica y subgaláctica

El catálogo simulado de Gaia

- 3.2×10⁸ estrellas
- Zona de exclusión: b<5° en cuadrantes I y IV.
- Poblaciones: Bulbo, disco, halo.
- Observables: *I,b*, π , μ_{α} , μ_{δ} , v_{r} , m_{V} , B-V,...

Ingredientes:

- Modelo de masa de la Galaxia
- Modelo de luz de la Galaxia
- Función de luminosidad y diagrama color-magnitud
- Modelo cinemático de cada población estelar de la Galaxia

Observaciones simuladas:

- Límites en observables del catálogo de Gaia
- Modelo realista de errores observacionales (sistemáticos y aleatorios)

Grupo de Cosmología a escalas Galáctica y subgaláctica

Normalization at solar neighborhood: 0.067 $ m L_{o}/ m pc^{3}$				
$L_{Gal} = 3.2 \times 10^{10} L_{\odot}$	q _H : 0.8			
$L_B = 4.7 \times 10^9 L_{\odot}$ (14.6 %)	r_{B} : 0.383 R_{D} : 3.5 z_{D} : 0.2 r_{H} : 1 R_{\odot} : 8.5			
$L_{\rm D} = 2.3 \times 10^{10} L_{\odot}$ (73.2 %)	$(j_{\rm H}/j_{\rm D})_{\odot}$ = 0.00125 $(L_{\rm H}/L_{\rm D})$ = 0.1667			
$L_{\rm H} = 3.9 \times 10^9 L_{\odot}$ (12.2 %)	$(j_{B}/j_{D})_{\odot}$ = 5.5×10 ⁻⁵ (L_{B}/L_{D}) = 0.200			

Los satélites simulados

- Modelos de King
- 10⁶ estrellas en cada uno
- Masas: 2.8 y 5.6 × 10⁷ M₀
- Peris: entre 3.5 y 40 kpc
- Apos: entre 55 y 105 kpc
- Inclinaciones: entre 25° y 60
- Tiempo simulado: 10¹⁰ años.

Nombre	Edad (Gaños)	[Fe/H] (dex)	Ly (%)
Tipo halo	13	-1.7	100
	13	-1.7	30
Tipo Carina	8	-1.7	50
	3	-1.7	20

Grupo de Cosmología a escalas Galáctica y subgaláctica

El problema de la aguja en el pajar

Stellar densities: satellite only

Cuando buscamos algo Hay veces en que lo que encontramos, no es lo que creiamos que veriamos.

Complicaciones:

- Errores observacionales,
- Efectos de selección,
- Fondo galáctico.

Stellar densities: galaxy + satellite

Calibración de conteos y variación en la profundidad del muestreo.

Variación en la profundidad de muestreo de $\varphi_{sat}(L)$

Dependiendo de la órbita, algunas aestrellas son siempre visibles, otras a veces y otras nunca.

Grupo de Cosmología a escalas Galáctica y subgaláctica

RESULTADOS

Grupo de Cosmología a escalas Galáctica y subgaláctica

El espacio de integrales de movimiento

Helmi y de Zeeuw, MNRAS 319, 657 (2000) Brown, Velázquez y Aguilar, MNRAS 359, 1287 (2005)

El diagrama de E vs L_z

Grupo de Cosmología a escalas Galáctica y subgaláctica

II Reunión

Científica

de la REG

El Método del Círculo Máximo

Johnston, Hernquist y Bolte, ApJ 465, 278 (1996)

$$|\hat{L}\cdot\hat{\mathbf{r}}_{\star}|\leq\delta_{r}$$

La posición de la estrella debe medirse con respecto al centro galáctico. Johnston et al. usaron el marco heliocéntrico y aceptaron el error resultante como una limitación del método.

gaia

Il Reunión

Científica

de la REG

Grupo de Cosmología a escalas Galáctica y subgaláctica

El Método del Círculo Máximo Extendido

Mateu et al., MNRAS 415, 214 (2011)

$$|\hat{L}\cdot\hat{\mathbf{r}}_{\star}|\leq\delta_{r}$$
 $|\hat{\mathbf{L}}\cdot\hat{\mathbf{v}}_{\star}|\leq\delta_{v}$

La posición de la estrella debe medirse con respecto al centro galáctico. Johnston et al. usaron el marco heliocéntrico y aceptaron el error resultante como una limitación del método.

Grupo de Cosmología a escalas Galáctica y subgaláctica

COMPARACIÓN DE MÉTODOS

FONDO GALÁCTICO

INCLUIR LA INFORMACIÓN CINEMÁTICA REDUCE SIGNIFICATIVAMENTE EL FONDO.

Grupo de Cosmología a escalas Galáctica y subgaláctica

DETECCIÓN DE EVENTOS

MAPAS DE CONTEO EN POLOS

Como el fondo es constante, puede ser removido con técnicas estándard

Grupo de Cosmología a escalas Galáctica y subgaláctica

Bibliografía:

Detection of satellite remnants in the Galactic Halo with Gaia - I. The effect of the Galactic background, observational errors and sampling. Brown, A.G, Velázquez, H., Aguilar L. MNRAS **359**, 1287-1305(2005)

Detection of satellite remnants in the Galactic Halo with Gaia - II. A modified great circle cell method. Mateu, C., Bruzual, G., Aguilar, L., Brown, A.G., Valenzuela, O., Carigi, L., Velázquez, H., Hernández, F. *MNRAS* **415**, 214 - 224 (2011)

II Reunión

Científica

de la RFG

Grupo de Cosmología a escalas Galáctica y subgaláctica

