Gaia module

Josep Manel Carrasco

Universitat de Barcelona, DAM-ICCUB-IEEC

carrasco@am.ub.es

September 20, 2011

Outline

Motivation

2 Ingredients

Gaia photometry

3 Results

- Transformations
- Isochrones
- Reddening

4 Gaia performances

5 Application to scientific exploitation

- Cool White Dwarfs
- ALHAMBRA passbands
- Star-pop at IAC

Motivation

Gaia module

- The scientific community needs to be prepared to analyse the data from *Gaia*.
- We provide data in order to know in advance how *Gaia* photometry will be.
- We provide relationships among colours involving *Gaia* magnitudes (white light *G*, blue *G*_{BP}, red *G*_{RP} and RVS bands) and colours from other commonly used photometric systems (Johnson-Cousins, Sloan, Hipparcos and Tycho).
- These relationships were obtained using sources with different reddening values, range of colours, luminosity classes and metallicities.
- We added an error model to obtain *Gaia* magnitudes and parallaxes affected by observational errors.

Ingredients

Gaia photometry

Focal plane (courtesy of ESA, A. Short).

Gaia passbands.

Band	G	$G_{ m BP}$	$\mathcal{G}_{ ext{RP}}$	G_{RVS}
λ_{\min} (nm)	350	350	650	847
λ_{\max} (nm)	1000	650	1000	874
$\lambda_{ m o}$ (nm)	638	517	786	860
$\Delta\lambda$ (nm)	433	263	277	28

• spectrophotometry (BP/RP): chromaticity, astrophysics

Josep Manel Carrasco (UB)

Gaia module

Results (Jordi et al, 2010, A&A 523, 48)

Transformations

SDSS: g' - i' relationships more sensitive to reddening than $V - I_C$. $G_{\rm BP} - G_{\rm RP}$ correlates better with g' - z' than with g' - i'. Larger residuals than with Johnson passbands. The dispersion increase for $T_{\rm eff} < 4500$ K (more present in g' - r' than in r' - i').

g'-1

main trend for $G_{\rm BP} - G_{\rm RP} \gtrsim 4$ due to cool metal poor stars with $T_{\rm eff} < 2500$ K and [M/H]<-1.5 dex. It is preferable not to use the transformation with B - V or $B_T - V_T$ for the cool stars.

Results (Jordi et al, 2010, A&A 523, 48)

Isochrones

Padova isochrones (Marigo et al. 2008) computed in the *Gaia* passbands for solar metallicity and for different ages. Stellar tracks, isochrone files in the *Gaia* passbands are available as web interface at (http://stev.oapd.inaf.it).

Results (Jordi et al, 2010, A&A 523, 48)

Reddening

Absorption, A_G , and color excess, $E(G_{\rm BP}-G_{\rm RP})$, derived for Gaia magnitudes. The scattering that appears for $(V - I_C)_0 \gtrsim 1.5$ or $(r - i)_0 = 0.3$ (i.e. $T_{\rm eff} = 4500$ K) is due to the dependency in [M/H] and log g.

Gaia performances (available in Gaia webpage at ESA)

Error in parallax

$$\tau_{\pi}[\mu as] = (9.3 + 658.1 \cdot z + 4.568 \cdot z^2)^{1/2} \cdot [0.986 + (1 - 0.986) \cdot (V - I_C)],$$

where
$$z = MAX[100.4(12 - 15), 100.4(G - 15)]$$
.

Josep Manel Carrasco (UB)

Cool White Dwarfs

• Same study was repeated using WD library (S. Catalan & P.-E. Tremblay)

ALHAMBRA passbands

 Same study was repeated using ALHAMBRA passbands and with NGSL stars (T. Aparicio & E. Alfaro)

Star-pop at IAC

Gaia photometry was computed from Besançon Output (see M. Czekaj) to be applied to Star-pop code from IAC (see A. Aparicio & S. Hidalgo).

Star-pop at IAC

Gaia observed CMD for the solar neighbourhood (100 pc):

Thank you

Gaia module

Josep Manel Carrasco

Universitat de Barcelona, DAM-ICCUB-IEEC

carrasco@am.ub.es

September 20, 2011

Gaia photometry (Jordi et al, 2010, A&A 523, 48)

Motivation

2 Ingredients

Gaia photometry

3 Results

- Transformations
- Isochrones
- Reddening

4 Gaia performances

5 Application to scientific exploitation

- Cool White Dwarfs
- ALHAMBRA passbands
- Star-pop at IAC