Star formation in the Gould Belt: paving the way for Gaia

A. Mora, C. Eiroa & B. Montesinos

The Gould Belt

- ► Elliptical ring encompassing the brightest stars and most nearby dark clouds (~700x500 pc)
- ▶ Tilted 20° with respect to the Galactic plane
- ► Age: between 20 and 60 Myr
- ► Total mass ~2x10⁵ M_{SUN}
- ▶ Origin: still uncertain
- Gaia will trace the Gould Belt structure and dynamics star by star
- Gaia will trace the groups of movement
- Gaia will determine what objects have been ejected and captured

The Gould Belt

Ward-Thompson et al. 2007. PASP 119, 855

The Gould Belt: star formation

- ▶ Recent star formation (~1Myr) in many regions
- ▶ Low and intermediate mass stars
- Close to us: 140-500 pc → ideal for Gaia
- ▶ Ideal to develop stellar evolutionary models
- ▶ Tracks: T_{eff} and R_{\star} as a function of time and M_{\star}
 - Significant dependence of the metallicity
 - Isochrones vs empirical calibrators (e.g. LiI)
- ▶ The role of accretion rate (dM/dt) is still unclear
 - How does it evolve with time, mass, metallicity, ...?

Evolutionary tracks: degenerate near the ZAMS

Montesinos et al. 2009. A&A 495, 901

Little knowledge near the ZAMS. PMS or post-MS?
Gaia will provide accurate radii → degeneracy broken?

Evolutionary tracks: influence of the metallicity

- •Precise metallicities required to effectively break degeneracies near the ZAMS
- •Gaia will not provide them for intermediate mass stars (too high rotation velocity)
- •Require high resolution spectroscopy

Kim et al. 2002. ApJSS 143, 499

Accretion rate: veiling

- Material is accreted from the disc during PMS phase
- ► Large amounts of energy released during the shock
- ▶ Veiling in *U* and *B* bands
- ► $\Delta(U-B)$ + models \rightarrow dM/dt
- ightharpoonup Models fail for large $T_{\rm eff}$
- ▶ Gaia will measure $\Delta(U-B)$

Mendigutía et al. 2011. A&A 535, 99

Accretion rate: line luminosities

- \triangleright Secondary tracers. cross-calibration with $\Delta(U-B)$
- ▶ Validation and extension $\Delta(U-B)$ laws to higher masses
- Require simultaneous visible and NIR spectrophotometry

Mendigutía et al. 2011. A&A 535, 99

The Gould Belt: dynamics

- ► Gaia performance: bright stars (G~15) @ 300 pc
 - Parallaxes $\Delta \pi \sim 24 \mu as \rightarrow 2.2 pc$
 - Proper motions Δµ ~ 13 µas/yr → 19 m/s
 - Radial velocity ~3km/s
 - Young objects (~1 Myr): M ≥ 0.25 M_{Sun}
- ► Gaia performance: faint stars (G~20) @ 300 pc
 - Parallaxes Δπ ~290 µas → 26 pc
 - Proper motions Δμ ~150 μas/yr → 210 m/s
 - Radial velocity: no
 - Young objects (~1 Myr): M ≥ 12 M_{Jupiter}
- ▶ Detailed dynamics → high precision radial velocities
- Require high resolution spectroscopy

http://www.rssd.esa.int/index.php?project=GAIA&page=Science_Performance

The role of 2-4m telescopes

- ▶ Gaia exploitation requires precursor studies. Most young stars in the Gould Belt could be characterised beforehand. Large scale surveys
- Next generation evolutionary tracks
- Stellar association internal dynamics
 - Both require high resolution spectroscopy. échelle if possible. Near infrared for substellar objects
 - Multiplexing required for large scale surveys similar to Gaia-ESO
- Cross-calibration of accretion rate tracers
 - Multi-epoch visible and near infrared spectrophotometry
 - Ideal instrument: Xshooter
 - Alternative: visible and NIR camera-spectrographs