

SOBRE LA PRIMERA Y SEGUNDA PUBLICACIÓN DE DATOS

(based on a presentation by A. Brown)

EEC IV Reunión Científica REG – Barcelona 23-25 Mayo 2016

http://www.cosmos.esa.int/web/gaia/release

- 1st release (summer 2016): (α,δ,G) for all well-behaved sources, variable, TGAS $(\alpha,\delta,G,\mu,\pi)$
- 2nd release (end 2017): $(\alpha, \delta, G, \mu, \pi, G_{BP}, G_{RP}, V_{rad})$ for all well-behaved sources
- **3rd release (2018):** Binary orbits, Classification + astrophysical parameters
- 4th release (2019): Variable classification + epoch photometry, Solar system, Non-single star catalogue.
- **Final release (2022):** Full astrometric, photometric and radial-velocity catalogues, variable stars, non-single, classifications, astrophysical parameters, exoplanet list, epoch data for all sources, ground-based observations for data-processing.

Gaia-DR1 contents

Astrometry

 α , δ for all sources (> 1 billion)

 ϖ , $\mu_{\alpha*}$, μ_{δ} for TGAS sources (~ 2 million)

Covariance matrices (standard errors and correlations)

→ formal errors 'inflated' to realistic values

Statistical information to judge astrometry quality

Photometry

Mean G-band fluxes and errors for all sources

G magnitudes in VEGAMAG system

Photometric zero-points for VEGAMAG and AB

No pass-band calibration, transformation to other systems will be provided

Statistical information to judge photometry quality

Variable star data

G-band light curves for selected RR-Lyrae and Cepheids

Classification information for these variables

Statistical information on G-band time series

- Gaia-DR1 results will be immensely valuable
 - most accurate sky-map to date at HST-like resolution
 - large increase in parallax information
 - much more accurate proper motions for Hipparcos stars
- Experience from scientific use of the data will benefit future improvements of the Gaia data processing

Gaia-DR1 processing status

General

- 14 months of input data used
- $\sim 2.3 \times 10^{10}$ transits across focal plane
- all sources treated as single
- preliminary validation of astrometry and photometry completed

Astrometric processing

- Finished, results in main data base at ESAC
- \bullet positions for > 1 billion sources ($m \lesssim 20$)
- parallax and proper motion for 2 million Hipparcos and Tycho-2 stars $(m \lesssim 11.5)$
- reference frame aligned to ICRS, astrometry at epoch J2015.0
- basic angle variation correction derived from on-board metrology

Photometric processing

- Finished, results in main data base at ESAC
- mean G-band magnitudes for all sources
- Light-curves for selected RR-Lyrae and Cepheids, mainly around ecliptic poles
 - Light-curve processing (classification and characterization) finished, data to be integrated into MDB

Gaia-DR1: next steps

- 1. Integrate processing results into main data base (done)
- 2. Final validation of the results by independent DPAC team (CU9, ongoing)
- 3. Agreement by Gaia Science Team and DPAC Executive on Gaia-DR1 contents
 - contents of Gaia-DR1 subject to validation and GST/DPACE approval
- 4. Prepare documentation (ongoing)
 - ▶ including Gaia-DR1 papers for A&A edition
- 5. Provide details on data model and statistical information on contents
- 6. Open the Gaia archive (end of summer 2016)
- 7. Go crazy with the data...

Gaia-DR1 contents

Filtering before release

- Contents of Gaia-DR1 are not a 1-to-1 copy of main data base contents
- Filtering of results will be done based on validation at the AGIS, PhotPipe and VariPipe level, and at global level (CU9)
- YOUR FAVOURITE SOURCE(S) MAY THUS NOT APPEAR IN Gaia-DR1

Examples

- Omit sources with too few observations
- Omit sources without astrometry and/or photometry
- Upper limit on errors in parallax, position, photometry
- Omit sources suffering from specific problems in the data processing (e.g., data gaps)
- No high proper motion stars ($\mu > 3.5$ arcsec yr⁻¹) due to technical issue
- ...

Gaia-DR1: facilities

- Online archive @ ESDC (ESAC Science Data Centre)
 - catalogue mirrored at CDS, ASDC, ARI, AIP, as well as STScI, USNO, NAOJ, SAAO, ObsPM
 - these data centres may layer their own services on top of Gaia catalogue
- Online (interactive) and offline documentation
 - archive contents and the meaning of the tables
 - how was the processing done
 - how were the results validated
 - A&A papers providing 'condensed documentation'
 - science verification papers on open clusters and Cepheids
- Query tools for the archive (ADQL, TAP)
- Visualization tools
 - pre-computed views of large data sets
 - web-client with linked views, option to visually generate catalogue queries
- Pre-computed and validated cross-match with:
 - Hipparcos-2, Tycho-2, 2MASS PSC, GSC2.3, PPMXL, UCAC4, SDSS DR10/DR12, AllWISE, URAT-1, RAVE

http://gaia.esac.esa.int/archive/

http://gaia.esac.esa.int/archive/

Plans for Gaia-DR2

- Planned for autumn 2017
 - ▶ DPAC schedule under heavy revision
- Astrometry and photometry based on roughly 22 months of data
 - Gaia stand-alone astrometric solution (unlike TGAS, no priors needed)
 - 5-parameter astrometry for all sources
- Broad band colours $(G_{BP} G_{RP})$
 - improved photometric calibrations
 - proper pass-band calibrations
- Median radial velocities for bright ($G_{RVS} < 12$) stars
- More variable star results
 - Cepheids, RR Lyrae all sky, LPV, short time scale variables, exercise exo-planet transit algorithms, QSO variability
- Astrophysical parameters
 - attempt determination T_{eff} and A_0 from $(G_{BP} G_{RP})$ or publish relation between T_{eff} and $(G_{BP} G_{RP})$
 - ▶ from BP/RP spectra: T_{eff} , A_0 , [Fe/H], $\log g$ ([Fe/H], $\log g$ only for brighter stars)
 - \blacktriangleright for TGAS stars release M_G
 - attempt radius and luminosity determination for TGAS sources

THANK YOU