Modelling the Galaxy

James Binney
Oxford University

Why models?

- Selection effects
 - The stars we see are determined by our location
 - Many are obscured by dust, which is has an extremely complex distribution
- Errors
 - Their locations in phase space are uncertain
 - Measured parallaxes can be –ve
 - Parallaxes determine 3/6 phase-space coordinates
 - Hopeless to consider that "Gaia will return all 6 phase-space coordinates"
- Models enable us to allow for selection effects and errors
- Models enable us to synthesize information from different surveys

Traditional models

- Assume $f(x,v) = \sum_{\alpha} \rho_{\alpha}(x) \exp[-v^2/2\sigma_{\alpha^2}(x)]$
- Adopt a dust model
- Exploit that for SSP can predict distribution in L, colours, etc for stars of given (τ,Z) parameterised by M
- Then produce mock catalogues from isochrones and limiting magnitude etc of catalogue
 - Besancon model (Creze+ 1986 Robin+ 2003) imposes a degree of self-consistency between τ , σ_z and z_0
 - TRILEGAL model (Groenewegen+ 2002, Girardi+ 2005)
 - Galaxia (Sharma+ 2010) a more efficient machine for sampling a pdf of stars
 - The Gaia mock catalogue now has this foundation

My themes

- We need to upgrade from $\rho(x) \exp(-v^2/2\sigma^2)$ to fully dynamical f(x,v)
- In addition to generating mock catalogues we need to fit DF to data by generating pdf in space of observables
 - (I,b, ϖ , μ_{α} , μ_{δ} , v_{los} ,V, V-I, T_{eff} ,logg,...)

Why dynamical models?

- A primary target is DM distribution.
 - We infer this by using $d^2x/dt^2 = -\nabla \Phi$
 - We want to know how the Galaxy works:
 - E.g. the relation between distribution of stars in velocity space and spiral structure/the bar
 - Cause of the warp
- We want our models to be dynamically consistent – the same tomorrow as today

Why equilibrium models?

- Can get DM density only to the extent that the Galaxy is in equilibrium
- At r<20 kpc expect system to be close to equilibrium
- Assumption of dynamical equilibrium dramatically reduces the freedom of models – it makes the modelfitting problem satisfyingly over-determined
- We can model non-equilibrium phenomena by perturbing an equilibrium model
- Also should use equilibrium models to identify signature in data of non-equilibrium structures (streams, warp, spirals, etc)

Why models based on actions?

- Jeans theorem encapsulates loss of freedom on restriction to equilibrium: $f(x,v) \rightarrow f(I_1, I_2, I_3)$
- Actions are uniquely favoured integrals:
 - Adiabatic invariants
 - Useful during slow changes in Φ
 - Enable us to identify orbits in neighbouring potentials
 - Easy to understand physically
 - range $(0,\infty)$
 - Can be used as momenta of a canonical coordinate system
 - conjugate variables the angles heta
 - (θ ,J) the natural coordinates of perturbation theory
 - $d^3x d^3v = (2\pi)^3 d^3J$ so f(J) density of stars in 3d action space

Why models with known DF?

- Coordinates of individual stars of no significance
 - it is the density of stars that carries information
- Since stars are distinguishable by age, mass, [Fe/H], [α /Fe],.... we need many DFs f(J)
- On account of selection effects and errors we must fit model in space of observables
 - (I,b, ϖ , μ_{α} , μ_{δ} , v_{los} , V, V-I, T_{eff} , logg, [Fe/H],...)
 - 11d and counting
- n graduations per axis ightarrow nd cells, >30 stars/cell ightarrow 1.5e9 stars in catalogue
- Even with Gaia barely feasible because getting optimal grid will be extremely hard
- But suppose have N-body model
 - Great majority of particles will be too far from Sun enter mock catalogue, so need >>10⁹ particles to get Gaia-sized catalogue
- People usually project catalogue to low-d subspace and grid that
 - Projection erases correlations between variables but correlations are key

• If we have $f_{\alpha}(J)$ with α labelling population, can predict pdf(l,b, ϖ , μ_{α} , μ_{δ} , v_{los} , V,V-I, T_{eff} , logg, [Fe/H],...) and calculate L(data)

Oxford models

- Construct f(J) of discs from "quasi-isothermal"
- Assume f(J) and so far no use of isochrones; emphasis on computing likelihood of data (McMillan)
- f(J) assembled from "quasi-isothermal" building blocks

$$f_{\text{thk}}(J_r, J_z, L_z) = f_{\sigma_r}(J_r, L_z) f_{\sigma_z}(J_z)$$

$$f_{\sigma_r}(J_r, L_z) \equiv \frac{\Omega \Sigma}{\pi \sigma_r^2 \kappa} \bigg|_{R_c} [1 + \tanh(L_z/L_0)] e^{-\kappa J_r/\sigma_r^2}$$

$$f_{\sigma_z}(J_z) \equiv \frac{\nu}{2\pi \sigma_z^2} e^{-\nu J_z/\sigma_z^2}$$

A quasi-isothermal model

-2.5

10

A model with a growing thin disc

$$\sigma_z(L_z, \tau) = \sigma_{z0} \left(\frac{\tau + \tau_1}{\tau_{\rm m} + \tau_1} \right)^{\beta} e^{q(R_0 - R_c)/R_d}$$

$$f_{\rm thn}(\mathbf{J}) = \int_0^{\tau_m} d\tau \frac{e^{\tau/t_0} f_{\sigma_r}(J_r, L_z) f_{\sigma_z}(J_z)}{t_0(e^{\tau_m/t_0} - 1)}$$

A "realistic" model

Next steps

- Add chemical dimension by making parameters functions of Z in addition to τ
- Things to do
 - Fit DF to data in space of observables (McMillan) & discover how precisely we can define physics with data of various qualities
 - Fit DF to N-body models to be sure it can represent reasonable chemodynamical histories
 - Use model as intermediary between N-bodies & data (Brown, Velasquez & Aguilar 2005)?
 - Use model as intermediary between N-bodies and Mock Gaia?

Conclusions

- We should upgrade front end of Mock-Gaia to chemo-dynamical models
- In addition to Mock Catalogues we need the underlying pdf in space of observables
- Think of Mock-Gaia as a filter between dynamics and space of observables
- The dust model in this filter should be refined by Gaia data
- We don't yet know what physics questions can be answered with given data
- I think we know how to find out though
- But we don't have so much time
- Fitting models based on good physics will be a powerful means of detecting systematics
- So let's have continuous updating of the Gaia products!