

DIGGING OUT SUBSTRUCTURE IN THE HALO WITH GAIA

90° 120° 150°

LUIS A. AGUILAR UNAM/MÉXICO & UBARCELONA

WHY DIG?

WHERE TO DIG?

Spatial information from photometry

Large scale photometric surveys (SDSS, 2MASS).

Majewski et al. *ApJ*, 599, 1082 (2003) 2MASS sky plot for. *11 < Ks < 12 1.00 < J-Ks < 1.05* (top) *12 < Ks < 13 1.05 < J-Ks < 1.15* (bottom)

δ

"Field of Streams" Belokurov et al. *ApJ*, 642, L137 (2006) SDSS sky plot for g - r < 0.4B: 20.00 < $r \le 20.66$ G: 20.66 < $r \le 21.33$ R: 21.33 < $r \le 22.00$

WHERE TO DIG?

Adding kinematical information

Helmi, ет AL. Nat 402, 53 (2002) Sample of 97 metal poor red giants and RR-Lyrae stars with radial velocities and Hipparcos astrometry.

WHERE TO DIG?

Adding metallicity information

TOLSTOY, ET AL. *ARAA* **47**, **371** (2009) α-element metallicities for 4 nearby dwarf spheroidal galaxies compared with our Galaxy.

HOW TO DIG?

N-body simulations as guides

SKY PROJECTIONS

Systematic experiments that can help us design search strategies.

Johnston, Hernquist and Bolte, ApJ, 465, 278 (1996) **Great Circle Cell Count Method** Simulations: Self-consistent field code, fixed, spherical galactic potential, 10^4 particle Plummer model satellites, 10 Gyrs time span.

FIDUCIAL CASE EFFECT OF DECREASING VELOCITY DISPERSION ↓ EFFECT OF INCREASING CENTRAL DENSITY ↓

HOW TO DIG?

Theoretical spaces

Searches in the space of integrals of motion.

A steady state potential preserves E, a spherical potential preserves L, an axisymmetric potential preserves L_z

HELMI AND DE ZEEUW, MNRAS, 319, 657 (2000) SPACE OF CONSERVED QUANTITIES SIMULATIONS: Multipolar code, fixed galactic potential, 10⁵ particle King model satellites, 12 *Gyr* time span, simulated *Gaia* errors.

What would you do with a catalogue with 3D info for 10⁹ stars?

THE PROMISE OF GAIA

LAUNCH DATE: AUGUST 2013 MISSION SPAN: 5 YEARS ORBIT: LISSAJOUS TYPE AROUND L2 MISSION CAPABILITIES: ASTROMETRY, PHOTOMETRY, SPECTROSCOPY

Magnitude limit: Completeness: Number of objects:

Astrometric accuracy:

Photometry: Radial velocities: Observing program: 20-21 mag 20 mag 26 million to V=15250 million to V=181,000 million to V=207 µarcsec at V=1010 µarcsec at V=15200 µarcsec at V=204 broad band to V=201-10 km/s at V=16-17On-board and unbiased

eesa

A DIFFERENT WAY OF LOOKING AT THINGS

MOCK CATALOGUES

MOCK CATALOGUES

Stellar population models

Catalogue simulator

A LOT OF WORK WE NEED TO POOL **EFFORTS**

OUR EXAMPLE

Mon. Not. R. Astron. Soc. 359, 1287-1305 (2005)

doi:10.1111/j.1365-2966.2005.09013.x

Universiteit Leider

WE DEVELOPED:

- Mass model of the Galaxy
- Light model of the Galaxy
- Dynamical and stellar pop. satellite models.
- Gaia mock catalogue generator
- Tool to insert N-body simulations within mock catalogue.

ADVANTAGES:

- Freedom to test our ideas in a realistic framework
- Have all tools ready before first data release.

DISADVANTAGES:

- Lots of preparatory work
- Models not as sophisticated as some already available.

Detection of satellite remnants in the Galactic Halo with Gaia – I. The effect of the Galactic background, observational errors and sampling

UNIVERSITAT DE BARCELONA

B

Anthony G. A. Brown,^{1*} Hector M. Velázquez² and Luis A. Aguilar² ¹Sterrewacht Leiden, PO Box 9513, 2300 RA Leiden, the Netherlands ²Instituto de Astronomía, UNAM, Apartado Postal 877, Ensenada, 22800, Baja California, Mexico

Monthly Notices of the ROYAL ASTRONOMICAL SOCIETY

Mon. Not. R. Astron. Soc. 415, 214-224 (2011)

doi:10.1111/j.1365-2966.2011.18690.x

Detection of satellite remnants in the Galactic Halo with *Gaia* – II. A modified great circle cell method

C. Mateu,^{1*} G. Bruzual,¹ L. Aguilar,² A. G. A. Brown,³ O. Valenzuela,⁴ L. Carigi,⁴ H. Velázquez² and F. Hernández¹

¹Centro de Investigaciones de Astronomía, AP 264, Mérida 5101-A, Venezuela
 ²Instituto de Astronomia, UNAM, Apartado Postal 877, 22860 Ensenada, B.C., México
 ³Sterrewacht Leiden, Leiden University, PO Box 9513, 2300 RA Leiden, the Netherlands
 ⁴Instituto de Astronomía, UNAM, Apartado Postal 70-264, 04510 México, D.F., México

... MORE IN THE PIPELINE

SOME LESSONS LEARNED

REALISTIC BACKGROUND

STAR COUNTS: SATELLITE

ADDING A REALISTIC BACKGROUND, WITH THE PROPER STAR COUNTS IS VERY IMPORTANT

STAR COUNTS: SATELLITE+GALAXY

5.3 Log (stars/sq. degree)

REALISTIC BACKGROUND

UFGX SIMULATION:

 $L_v = 10^3 L\odot$ $r_h = 50 pc$ $\sigma = 5 km/s$

 $d = 10 \ kpc$ $v_{cm} = 100 \ km/s$

 $l = 180^{\circ}$ $b = 25^{\circ}$

INSERTION IN MOCK CATALOGUE

A PROPER WAY TO INCORPORATE AN N-BODY SIMULATION IN A MOCK CATALOGUE IS FUNDAMENTAL

Variation in depth of probing of streamer

A DISSOLVING SATELLITE IS SPREAD ALONG A STREAMER WITH VARYING DISTANCE TO THE OBSERVER.

AND THIS RESULTS IN STARS THAT ARE ALWAYS SEEN, OTHERS THAT ARE SEEN SOMETIMES AND OTHER THAT ARE NEVER SEEN

SIMULATION #1

FAINTEST STAR SEEN AT CLOSEST DISTANCE

FAINTEST STAR SEEN AT LARGEST DISTANCE

ADDING REALISTIC ERRORS

ERRORS DEPEND NOT ONLY ON APPARENT BRIGHTNESS, BUT ALSO ON POSITION IN THE SKY, COLOR, ETC.

RADIAL VELOCITY ERRORS

GAIA SCANNING

OBA		FGKM	
V	$\sigma(v_r)$	V	$\sigma(v_r)$
10	0.25	10	0.1
15	4	16	1
16	10	17	2
17	50	18	6

ADDING REALISTIC ERRORS

The E vs Lz diagram

Error free

With errors

Good astrometry

The d vs v_r diagram

Error free

With errors

Good astrometry

50

UNDERSTAND THE SOURCE OF ERRORS

FIGURING OUT THE CONTRIBUTION OF EACH ERROR SOURCE AND THE WAY THEY MAP ONTO YOUR FINAL DIAGNOSTICS SPACE IS CRUCIAL

TOOL TO CONDUCT EXPERIMENTS

TOOL TO CONDUCT EXPERIMENTS

WORK IN OBSERVABLE SPACE

UFGX SIMULATION:

MODEL: PLUMMER $R_H = 20 \text{ pc}, \ \sigma = 3 \text{ Km/s}$ $L_V = 3.5 \times 10^3 \text{ L}_{\odot}$ 743 STARS DOWN TO $M_V = +5$, WHICH IS THE FAINT LIMIT OF THE PHOTOMETRY RANDOM REALIZATION.

POSITION: L=145°, B=45° **DISTANCES TO OBSERVER:** 1, 2, 5, 10 & 15 KPC.

Parallax vs. Position in the Sky

WORK IN OBSERVABLE SPACE

Parallax vs. distance

UFGX SIMULATION:

MODEL: PLUMMER $R_H = 20 \text{ pc}, \ \sigma = 3 \text{ Km/s}$ $L_V = 3.5 \times 10^3 \text{ L}_{\odot}$ 743 STARS DOWN TO $M_V = +5$, WHICH IS THE FAINT LIMIT OF THE PHOTOMETRY RANDOM REALIZATION.

POSITION: L=145°, B=45° **DISTANCES TO OBSERVER:** 1, 2, 5, 10 & 15 KPC.

WORK IN OBSERVABLE SPACE

Tangential velocities vs proper motions

DEVISE METHODS THAT WORK BEST IN OBSERVABLE SPACE

MGC3: MODIFIED GREAT CIRCLE CELL COUNTS METHOD MATEU, ET AL., 2011, MNRAS, 415, 214.

We add the extra requirement that the velocity vector lies within the great circle band.

$$|\hat{L} \cdot \hat{\mathbf{r}}_{\star}| \le \delta_r \qquad |\hat{\mathbf{L}} \cdot \hat{\mathbf{v}}_{\star}| \le \delta_v$$

$$\mathbf{r}_{gal} = \mathbf{r}_{\odot} + A_p \varpi^{-1} \left[(\cos l \, \cos b) \hat{\mathbf{x}} + (\sin l \, \cos b) \hat{\mathbf{y}} + (\sin b) \hat{\mathbf{z}} \right]$$
$$\mathbf{v}_{gal} = \mathbf{v}_{\odot} + v_r \hat{\mathbf{r}} + A_v \varpi^{-1} \left[(\mu_l \cos b) \hat{\mathbf{l}} + \mu_b \hat{\mathbf{b}} \right]$$

$$\mathbf{r}'_{gal} = \boldsymbol{\varpi} \mathbf{r}_{gal} = \boldsymbol{\varpi} \mathbf{r}_{\odot} + A_p \left[(\cos l \, \cos b) \hat{\mathbf{x}} + (\sin l \, \cos b) \hat{\mathbf{y}} + (\sin b) \hat{\mathbf{z}} \right]$$
$$\mathbf{v}'_{gal} = \boldsymbol{\varpi} \mathbf{v}_{gal} = \boldsymbol{\varpi} \mathbf{v}_{\odot} + \boldsymbol{\varpi} v_r \hat{\mathbf{r}} + A_v \left[(\mu_l \cos b) \hat{\mathbf{l}} + \mu_b \hat{\mathbf{b}} \right]$$

Now the reciprocal of the parallax is gone!

THEORETICAL VS OBSERVABLE SPACE

THEORETICAL SPACE

- MODELS SIMPLY DEFINED
- ERRORS AND SURVEY LIMITS DIFFICULT TO WORK WITH
- MODELS HAVE INFINITE "SIGNAL TO NOISE" RATIO

OBSERVABLE SPACE

- MODELS DIFFICULT TO WORK WITH
- ERRORS AND SURVEY LIMITS EASIER TO MODEL
- OBSERVATIONS HAVE FINITE "SIGNAL TO NOISE" RATIO

IN THE END, IT IS BETTER TO MANIPULATE MODELS RATHER THAN DATA

NEW TOOLS FOR A NEW ERA

THEORY:

E.G. TORUS MODEL OF THE GALAXY (BINNEY)

DATA ANALYSIS:

E.G. BAYESIAN INFERENCE

M. WEST (DUKE UNIV.)

THIS IS THE PRE-GAIA RELEASE

NEW & IMPROVED 2012 VERSION.

THE SET INCLUDES.

• TOY HAMILTONIAN

• ASSORTED TORI.

It contains:

- Toy torus
- Generating function
- Assorted tori
- Illustrated cards

WISH LIST

GAIA MOCK CATALOGUE WITHOUT ERRORS

GAIA MOCK CATALOGUE

WITH ERRORS

TOOL TO EXTRACT USER-DEFINED SUBSAMPLE

> TOOL TO ADD GAIA ERRORS TO OWN DATA

GUMS: GAIA UNIVERSE MODEL SNAPHOT GOG: GAIA OBJECT GENERATOR ~10⁹ stars

(~600 GB each file)

OUR MOCK GAIA CATALOGUE All stars except: $|b| < 10^{\circ} & -90^{\circ} < l < +90^{\circ}$ 3.4×10^{8} stars (~50 GB)

ABILITY TO MODIFY BASE GALACTIC MODEL

TIME IS RUNNING DOWN ...

YRS MNS DYS HRS MNS SNDS 01 05 18 01:30:00 300:00